Scaling Cardiac Biomechanics Digital Twins for Personalised Medicine
扩展心脏生物力学数字孪生以实现个性化医疗
基本信息
- 批准号:EP/X012603/1
- 负责人:
- 金额:$ 190.35万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modelling and simulation play important roles in designing everything from planes to cars to bridges. However, advances in connectivity and computing now enable models to be linked directly to a specific object or system, creating a "digital twin". Digital twins represent a computational surrogate for a particular object and are updated through time as more information becomes available. However, digital twins are not limited to manufactured objects alone. This project aims to develop digital twins of patients, where a model will track a patient through time. We focus on making digital twins of patients' hearts using detailed imaging data sets over the period of a clinical trial. This is the first step towards models that are updated in real-time, track the patient throughout their life and directly feed back into informing patient care. The digital twin approach builds on patient-specific computer models of the heart that are currently being evaluated to guide procedures in the UK at King's College London and in the US. These models are designed to optimise treatments for a specific patient's pathophysiology but only simulate a small number of heartbeats. Digital twins, which track a patient through time, will forecast disease progression and response to therapy. This represents the next step in simulation guided therapy, where the optimal treatment and, importantly, when to deliver it, will be predicted. This project will address the technical challenges in calibrating computer models of large numbers of patients, how to efficiently update these models through time as more data becomes available, how to analyse images of the heart recorded over the duration of a clinical trial and how to predict complex changes in shape and function of the heart. The approaches will be applied to study three patient groups in three studies. First, we will test if multi-scale cardiac biomechanics models can identify common causes of pump dysfunction in heart failure patients. Second, we will test if digital twins can predict which patients who have recovered from heart failure can stop their heart failure mediation. Thirdly, we will test if digital twin forecasts can be used to predict recovery and pre-empt the need for advanced heart failure therapy in newly diagnosed heart failure patients. This will provide the first demonstration of cardiac biomechanics digital twins using real clinical data to answer important clinical questions.
建模和仿真在设计从飞机到汽车再到桥梁的一切事物中发挥着重要作用。然而,连通性和计算方面的进步现在使模型能够直接与特定对象或系统联系起来,创造了一个“数字孪生”。数字双胞胎代表了特定对象的计算代理,并随着时间的推移而更新,因为有更多的信息可用。然而,数字双胞胎不仅限于制造对象。该项目旨在开发患者的数字双胞胎,其中模型将通过时间跟踪患者。我们专注于在临床试验期间使用详细的成像数据集制作患者心脏的数字双胞胎。这是迈向实时更新模型的第一步,可以在患者的整个生命周期中跟踪患者,并直接反馈给患者护理。数字孪生方法建立在患者特定的心脏计算机模型基础上,目前正在评估该模型,以指导英国伦敦国王学院和美国的手术。这些模型旨在优化针对特定患者病理生理学的治疗,但仅模拟少量心跳。数字双胞胎,通过时间跟踪病人,将预测疾病的进展和对治疗的反应。这代表了模拟引导治疗的下一步,其中最佳治疗以及重要的是,何时提供它将被预测。该项目将解决校准大量患者计算机模型的技术挑战,如何随着时间的推移有效地更新这些模型,如何分析临床试验期间记录的心脏图像以及如何预测心脏形状和功能的复杂变化。这些方法将应用于三项研究中的三个患者组。首先,我们将测试多尺度心脏生物力学模型是否可以识别心力衰竭患者泵功能障碍的常见原因。其次,我们将测试数字双胞胎是否可以预测哪些从心力衰竭中恢复的患者可以停止他们的心力衰竭调解。第三,我们将测试数字孪生预测是否可用于预测康复并预先满足新诊断心力衰竭患者对高级心力衰竭治疗的需求。这将提供心脏生物力学数字双胞胎使用真实的临床数据来回答重要的临床问题的第一个演示。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Niederer其他文献
Developing cardiac digital twin populations powered by machine learning provides electrophysiological insights in conduction and repolarization
开发由机器学习驱动的心脏数字双胞胎群体,提供了在传导和复极化方面的电生理见解
- DOI:
10.1038/s44161-025-00650-0 - 发表时间:
2025-05-16 - 期刊:
- 影响因子:10.800
- 作者:
Shuang Qian;Devran Ugurlu;Elliot Fairweather;Laura Dal Toso;Yu Deng;Marina Strocchi;Ludovica Cicci;Richard E. Jones;Hassan Zaidi;Sanjay Prasad;Brian P. Halliday;Daniel Hammersley;Xingchi Liu;Gernot Plank;Edward Vigmond;Reza Razavi;Alistair Young;Pablo Lamata;Martin Bishop;Steven Niederer - 通讯作者:
Steven Niederer
PO-05-163 TOWARDS AUTOMATED GENERATION OF ABLATION LESION MASKS: A UNISON OF ELECTRO AND OPTIC FLOW MAPPING
PO-05-163 迈向消融病变掩模的自动化生成:电与光流映射的统一
- DOI:
10.1016/j.hrthm.2024.03.1434 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:5.700
- 作者:
Ovais Ahmed Jaffery;Carlos E. Barrera;Cristobal Rodero;Alexander Zolotarev;Wilson W. Good;Gregory Slabaugh;Steven Niederer;Edward J. Vigmond;Caroline H. Roney - 通讯作者:
Caroline H. Roney
Leadless left ventricular endocardial pacing for cardiac resynchronization therapy: A systematic review and meta-analysis
- DOI:
10.1016/j.hrthm.2022.02.018 - 发表时间:
2022-07-01 - 期刊:
- 影响因子:5.700
- 作者:
Nadeev Wijesuriya;Mark K. Elliott;Vishal Mehta;Baldeep S. Sidhu;Jonathan M. Behar;Steven Niederer;Christopher A. Rinaldi - 通讯作者:
Christopher A. Rinaldi
Energetic consequences of mechanical loads.
机械负载的能量后果。
- DOI:
10.1016/j.pbiomolbio.2008.02.015 - 发表时间:
2008 - 期刊:
- 影响因子:3.8
- 作者:
D. Loiselle;Edmund J. Crampin;Steven Niederer;Nicolas P. Smith;Christopher John Barclay - 通讯作者:
Christopher John Barclay
Solution to the Unknown Boundary Tractions in Myocardial Material Parameter Estimations
心肌材料参数估计中未知边界牵引的解决方法
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Anastasia Nasopoulou;D. Nordsletten;Steven Niederer;P. Lamata - 通讯作者:
P. Lamata
Steven Niederer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Niederer', 18)}}的其他基金
Scaling Cardiac Biomechanics Digital Twins for Personalised Medicine
扩展心脏生物力学数字孪生以实现个性化医疗
- 批准号:
EP/X012603/2 - 财政年份:2023
- 资助金额:
$ 190.35万 - 项目类别:
Research Grant
In-Procedure Personalized Atrial Digital Twin to Predict Outcome of Atrial Fibrillation Ablation
术中个性化心房数字双胞胎可预测心房颤动消融的结果
- 批准号:
EP/W000091/2 - 财政年份:2023
- 资助金额:
$ 190.35万 - 项目类别:
Research Grant
In-Procedure Personalized Atrial Digital Twin to Predict Outcome of Atrial Fibrillation Ablation
术中个性化心房数字双胞胎可预测心房颤动消融的结果
- 批准号:
EP/W000091/1 - 财政年份:2022
- 资助金额:
$ 190.35万 - 项目类别:
Research Grant
Uncertainty Quantification in Prospective and Predictive Patient Specific Cardiac Models
前瞻性和预测性患者特定心脏模型中的不确定性量化
- 批准号:
EP/P01268X/1 - 财政年份:2017
- 资助金额:
$ 190.35万 - 项目类别:
Research Grant
Personalised Model Based Optimal Lead Guidance in Cardiac Resynchronisation Therapy
基于个性化模型的心脏再同步治疗中的最佳导联指导
- 批准号:
EP/M012492/1 - 财政年份:2015
- 资助金额:
$ 190.35万 - 项目类别:
Fellowship
Modelling Cardiac Energy Supply during Heart Failure
心力衰竭期间心脏能量供应建模
- 批准号:
EP/F043929/2 - 财政年份:2010
- 资助金额:
$ 190.35万 - 项目类别:
Fellowship
Modelling Cardiac Energy Supply during Heart Failure
心力衰竭期间心脏能量供应建模
- 批准号:
EP/F043929/1 - 财政年份:2009
- 资助金额:
$ 190.35万 - 项目类别:
Fellowship
相似海外基金
Examining the Function of a Novel Protein in the Cardiac Junctional Membrane Complex
检查心脏连接膜复合体中新型蛋白质的功能
- 批准号:
10749672 - 财政年份:2024
- 资助金额:
$ 190.35万 - 项目类别:
Towards widespread use of cardiac MRI using new affordable low magnetic field (0.55T) MRI scanner and AI
使用新型经济实惠的低磁场 (0.55T) MRI 扫描仪和 AI 实现心脏 MRI 的广泛使用
- 批准号:
2904562 - 财政年份:2024
- 资助金额:
$ 190.35万 - 项目类别:
Studentship
Targeting soluble guanylate cyclase as a novel strategy to treat and prevent cardiac arrhythmias: efficacy and mechanisms
靶向可溶性鸟苷酸环化酶作为治疗和预防心律失常的新策略:功效和机制
- 批准号:
MR/Y003594/1 - 财政年份:2024
- 资助金额:
$ 190.35万 - 项目类别:
Research Grant
Using Novel Machine Learning Methods to Personalize Strategies for Prevention of Persistent AKI after Cardiac Surgery
使用新颖的机器学习方法制定个性化策略,预防心脏手术后持续性 AKI
- 批准号:
10979324 - 财政年份:2024
- 资助金额:
$ 190.35万 - 项目类别:
Investigating the mechanosensitive interplays between genetic control and self-organisation during the emergence of cardiac tissue curvature
研究心脏组织曲率出现过程中遗传控制和自组织之间的机械敏感性相互作用
- 批准号:
BB/Y00566X/1 - 财政年份:2024
- 资助金额:
$ 190.35万 - 项目类别:
Research Grant
Novel minimally-invasive in-situ 3D bioprinting platform for cardiac regeneration
用于心脏再生的新型微创原位3D生物打印平台
- 批准号:
EP/X027287/2 - 财政年份:2024
- 资助金额:
$ 190.35万 - 项目类别:
Fellowship
Collaborative Research: CDS&E: An experimentally validated, interactive, data-enabled scientific computing platform for cardiac tissue ablation characterization and monitoring
合作研究:CDS
- 批准号:
2245152 - 财政年份:2023
- 资助金额:
$ 190.35万 - 项目类别:
Standard Grant
Postoperative reduction in thrombin generation in cardiac surgery: pathogenesis and evaluation
心脏手术术后凝血酶生成减少:发病机制和评估
- 批准号:
23H03001 - 财政年份:2023
- 资助金额:
$ 190.35万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a novel therapy for cardiac fibrosis using a cell removal vaccine
使用细胞去除疫苗开发治疗心脏纤维化的新疗法
- 批准号:
23K07504 - 财政年份:2023
- 资助金额:
$ 190.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Aging of cardiac fibroblasts and heart failure: novel heart failure treatment through regeneration and transplantation of cardiac fibroblasts
心脏成纤维细胞的衰老和心力衰竭:通过心脏成纤维细胞的再生和移植治疗心力衰竭
- 批准号:
23K07526 - 财政年份:2023
- 资助金额:
$ 190.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)