UK Quantum Technology Hub: NQIT - Networked Quantum Information Technologies

英国量子技术中心:NQIT - 网络量子信息技术

基本信息

  • 批准号:
    EP/M013243/1
  • 负责人:
  • 金额:
    $ 4845.78万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

This Hub accelerates progress towards a new "quantum era" by engineering small, high precision quantum systems, and linking them into a network to create the world's first truly scalable quantum computing engine. This new computing platform will harness quantum effects to achieve tasks that are currently impossible.The Hub is an Oxford-led alliance of nine universities with complementary expertise in quantum technologies including Bath, Cambridge, Edinburgh, Leeds, Strathclyde, Southampton, Sussex and Warwick. We have assembled a network of more than 25 companies (Lockheed-Martin, Raytheon BBN, Google, AMEX), government labs (NPL, DSTL, NIST) and SMEs (PureLiFi, Rohde & Schwarz, Aspen) who are investing resources and manpower.Our ambitious flagship goal is the Q20:20 engine - a network of twenty optically-linked ion-trap processors each containing twenty quantum bits (qubits). This 400 qubit machine will be vastly more powerful than anything that has been achieved to date, but recent progress on three fronts makes it a feasible goal. First, Oxford researchers recently discovered a way to build a quantum computer from precisely-controlled qubits linked with low precision by photons (particles of light). Second, Oxford's ion-trap researchers recently achieved a new world record for precision qubit control with 99.9999% accuracy. Third, we recently showed how to control photonic interference inside small silica chips. We now have an exciting opportunity to combine these advances to create a light-matter hybrid network computer that gets the 'best of both worlds' and overcomes long-standing impracticalities like the ever increasing complexity of matter-only systems, or the immense resource requirements of purely photonic approaches.Engineers and scientists with the hub will work with other hubs and partners from across the globe to achieve this. At present proof-of-principle experiments exist in the lab, and the 'grand challenge' is to develop compact manufacturable devices and components to build the Q20:20 engine (and to make it easy to build more).We have already identified more than 20 spin-offs from this work, ranging from hacker-proof communication systems and ultra-sensitive medical and military sensors to higher resolution imaging systems.Quantum ICT will bring great economic benefits and offer technical solutions to as yet unsolveable problems. Just as today's computers allow jet designers to test the aerodynamics of planes before they are built, a quantum computer will model the properties of materials before they've been made, or design a vital drug without the trial and error process. This is called digital quantum simulation. In fact many problems that are difficult using conventional computing can be enhanced with a 'quantum co-processor'. This is a hugely desirable capability, important across multiple areas of science and technology, so much so that even the prospect of limited quantum capabilities (e.g. D-Wave's device) has raised great excitement. The Q20:20 will be an early form of a verifiable quantum computer, the uncompromised universal machine that can ultimately perform any algorithm and scale to any size; the markets and impacts will be correspondingly far greater.In addition to computing there will be uses in secure communications, so that a 'trusted' internet becomes feasible, in sensing - so that we can measure to new levels of precision, and in new components - for instance new detectors that allow us to collect single photons.The hub will ultimately become a focus for an emerging quantum ICT industry, with trained scientists and engineers available to address the problems in industry and the wider world where quantum techniques will be bringing benefits. It will help form new companies, new markets, and grow the UK's knowledge economy.
该中心通过设计小型、高精度的量子系统,并将它们连接到一个网络中,以创建世界上第一个真正可扩展的量子计算引擎,加速迈向新的“量子时代”。这个新的计算平台将利用量子效应来完成目前不可能完成的任务。该中心是由牛津大学领导的九所大学组成的联盟,这些大学在量子技术方面具有互补的专业知识,包括巴斯,剑桥,爱丁堡,利兹,斯特拉斯克莱德,南安普顿,苏塞克斯和沃里克。我们已经组建了一个由超过25家公司(Lockheed-Martin、Raytheon BBN、Google、AMEX)、政府实验室(NPL、DSTL、NIST)和中小企业(PureLiFi、Rohde &施瓦茨、白杨)组成的网络,他们正在投入资源和人力。我们雄心勃勃的旗舰目标是Q20:20引擎--一个由20个光连接的离子阱处理器组成的网络,每个处理器包含20个量子比特。这台400量子比特的机器将比迄今为止已经实现的任何机器都要强大得多,但最近在三个方面取得的进展使其成为一个可行的目标。首先,牛津大学的研究人员最近发现了一种方法,可以通过光子(光粒子)以低精度连接精确控制的量子比特来构建量子计算机。第二,牛津大学的离子阱研究人员最近以99.9999%的准确率实现了精确量子位控制的新世界纪录。第三,我们最近展示了如何控制小硅芯片内的光子干涉。我们现在有一个令人兴奋的机会,联合收割机结合这些进步,创造一个轻物质混合网络计算机,获得“两全其美”,克服长期存在的不切实际的问题,如不断增加的复杂性的物质只有系统,或巨大的资源需求的纯光子方法。工程师和科学家与枢纽将与其他枢纽和合作伙伴从地球仪,以实现这一目标。目前,在实验室中进行的是原理验证实验,“最大的挑战”是开发紧凑的可制造设备和组件来构建Q20:20引擎(并使其易于构建更多)。我们已经确定了这项工作的20多个副产品,从防黑客通信系统和超敏感的医疗和军事传感器到更高分辨率的成像系统。量子ICT将带来巨大的经济效益,并为尚未解决的问题提供技术解决方案。就像今天的计算机允许喷气式飞机设计师在飞机制造之前测试飞机的空气动力学一样,量子计算机将在制造之前对材料的特性进行建模,或者在没有试错过程的情况下设计出一种重要的药物。这就是所谓的数字量子模拟。事实上,许多使用传统计算很难解决的问题都可以通过“量子协处理器”来增强。这是一种非常理想的能力,在多个科学和技术领域都很重要,以至于即使是有限的量子能力(例如D-Wave的设备)的前景也引起了极大的兴奋。Q20:20将是可验证量子计算机的早期形式,这是一台不折不扣的通用机器,最终可以执行任何算法并扩展到任何大小。市场和影响将相应地大得多。除了计算之外,还将在安全通信中使用,因此“可信”互联网变得可行,在传感中-这样我们就可以测量到新的精度水平,以及新的组件--比如让我们能够收集单光子的新探测器。该中心最终将成为新兴量子ICT产业的焦点,训练有素的科学家和工程师可以解决工业和更广泛的世界中的问题,量子技术将带来好处。这将有助于形成新的公司,新市场,并发展英国的知识经济。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigation into the writing dynamics of planar Bragg gratings using pulsed 213 nm radiation
使用脉冲 213 nm 辐射研究平面布拉格光栅的写入动力学
  • DOI:
    10.1364/ome.481901
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Ahmed Q
  • 通讯作者:
    Ahmed Q
Exact multistability and dissipative time crystals in interacting fermionic lattices
  • DOI:
    10.1038/s42005-022-01090-z
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    H. Alaeian;B. Buča
  • 通讯作者:
    H. Alaeian;B. Buča
Direct UV written waveguides and Bragg gratings in doped planar silica using a 213 nm laser
  • DOI:
    10.1049/ell2.12126
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Q. S. Ahmed;P. Gow;C. Holmes;P. Mennea;James W. Field;R. Bannerman;Devin H. Smith;C. Gawith;Philip Smith;J. Gates
  • 通讯作者:
    Q. S. Ahmed;P. Gow;C. Holmes;P. Mennea;James W. Field;R. Bannerman;Devin H. Smith;C. Gawith;Philip Smith;J. Gates
A perspective on multiparameter quantum metrology: From theoretical tools to applications in quantum imaging
  • DOI:
    10.1016/j.physleta.2020.126311
  • 发表时间:
    2020-04-30
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Albarelli, F.;Barbieri, M.;Gianani, I
  • 通讯作者:
    Gianani, I
Remote Non-Invasive Fabry-Pérot Cavity Spectroscopy for Label-Free Sensing.
  • DOI:
    10.3390/s23010385
  • 发表时间:
    2022-12-29
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Al Ghamdi A;Dawson B;Jose G;Beige A
  • 通讯作者:
    Beige A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ian Walmsley其他文献

Ian Walmsley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ian Walmsley', 18)}}的其他基金

REAGAN - Real-life applications with Gaussian boson sampling
REAGAN - 高斯玻色子采样的现实应用
  • 批准号:
    EP/Y029631/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4845.78万
  • 项目类别:
    Fellowship
QuICHE: Quantum information and communication with high-dimensional encoding
QuICHE:高维编码的量子信息与通信
  • 批准号:
    EP/T027177/1
  • 财政年份:
    2020
  • 资助金额:
    $ 4845.78万
  • 项目类别:
    Research Grant
ESCHER: Establishing Supply Chains for Emergent Quantum Computers
埃舍尔:为新兴量子计算机建立供应链
  • 批准号:
    EP/R041865/1
  • 财政年份:
    2018
  • 资助金额:
    $ 4845.78万
  • 项目类别:
    Research Grant
BBSRC IAA University of Oxford
BBSRC IAA 牛津大学
  • 批准号:
    BB/S50676X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 4845.78万
  • 项目类别:
    Research Grant
University of Oxford: experimental equipment upgrade
牛津大学:实验设备升级
  • 批准号:
    EP/M02833X/1
  • 财政年份:
    2015
  • 资助金额:
    $ 4845.78万
  • 项目类别:
    Research Grant
The DiPOLE Laser on the Helmholtz Beamline at XFEL
XFEL 亥姆霍兹光束线上的偶极激光器
  • 批准号:
    EP/M000508/1
  • 财政年份:
    2015
  • 资助金额:
    $ 4845.78万
  • 项目类别:
    Research Grant
Building Large Quantum States out of Light
用光构建大量子态
  • 批准号:
    EP/K034480/1
  • 财政年份:
    2013
  • 资助金额:
    $ 4845.78万
  • 项目类别:
    Research Grant
Small items of research equipment at the University of Oxford
牛津大学的小型研究设备
  • 批准号:
    EP/K031503/1
  • 财政年份:
    2012
  • 资助金额:
    $ 4845.78万
  • 项目类别:
    Research Grant
Towards Real Applications in Broadband Quantum Memories
走向宽带量子存储器的实际应用
  • 批准号:
    EP/J000051/1
  • 财政年份:
    2012
  • 资助金额:
    $ 4845.78万
  • 项目类别:
    Research Grant
2010 Grant Balance Oxford
2010年牛津大学补助金余额
  • 批准号:
    EP/J016322/1
  • 财政年份:
    2011
  • 资助金额:
    $ 4845.78万
  • 项目类别:
    Research Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

STTR Phase I: Innovating Micro-Light Emitting Diode (LED) Manufacturing with Novel Quantum Dot Micro-Patterning Technology
STTR 第一阶段:利用新型量子点微图案化技术创新微发光二极管 (LED) 制造
  • 批准号:
    2335283
  • 财政年份:
    2024
  • 资助金额:
    $ 4845.78万
  • 项目类别:
    Standard Grant
Scalable semiconductor quantum processor with flip chip bonding technology
采用倒装芯片接合技术的可扩展半导体量子处理器
  • 批准号:
    IM230100396
  • 财政年份:
    2023
  • 资助金额:
    $ 4845.78万
  • 项目类别:
    Mid-Career Industry Fellowships
Pivots: Creating a Pathway to a Career in Quantum Information Science and Technology
支点:开辟量子信息科学与技术职业之路
  • 批准号:
    2321413
  • 财政年份:
    2023
  • 资助金额:
    $ 4845.78万
  • 项目类别:
    Cooperative Agreement
Development of an efficient method combining quantum chemistry and machine learning to evolve PCR technology and gene mutation analysis
开发一种结合量子化学和机器学习的有效方法来发展 PCR 技术和基因突变分析
  • 批准号:
    22KJ2450
  • 财政年份:
    2023
  • 资助金额:
    $ 4845.78万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Highly Efficient Solar Window Technology Enabled by Quantum Dots
量子点实现的高效太阳能窗技术
  • 批准号:
    LP220200897
  • 财政年份:
    2023
  • 资助金额:
    $ 4845.78万
  • 项目类别:
    Linkage Projects
IAQD - Unlocking the potential of Short Wave Infrared (SWIR) sensors with novel InAs Quantum Dots technology
IAQD - 利用新型 InAs 量子点技术释放短波红外 (SWIR) 传感器的潜力
  • 批准号:
    10042304
  • 财政年份:
    2023
  • 资助金额:
    $ 4845.78万
  • 项目类别:
    Collaborative R&D
MWQD - Realising the true potential of Mid-Wave Infrared Sensors by improving affordability and adoption via Quantum Dot technology
MWQD - 通过量子点技术提高可承受性和采用率,实现中波红外传感器的真正潜力
  • 批准号:
    10066153
  • 财政年份:
    2023
  • 资助金额:
    $ 4845.78万
  • 项目类别:
    Collaborative R&D
3LX - Developing low-cost, low-energy, low-detection limit X-Ray image sensors for critical industries using quantum dot technology
3LX - 使用量子点技术为关键行业开发低成本、低能耗、低检测限的 X 射线图像传感器
  • 批准号:
    10077184
  • 财政年份:
    2023
  • 资助金额:
    $ 4845.78万
  • 项目类别:
    Collaborative R&D
Exploring the Ho ion, from quantum playground to technology enabler
探索 Ho 离子,从量子游乐场到技术推动者
  • 批准号:
    2850684
  • 财政年份:
    2023
  • 资助金额:
    $ 4845.78万
  • 项目类别:
    Studentship
Accurate representation of quantum data for promoting materials science and quantum technology
量子数据的准确表示,促进材料科学和量子技术
  • 批准号:
    23K03307
  • 财政年份:
    2023
  • 资助金额:
    $ 4845.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了