Building Large Quantum States out of Light

用光构建大量子态

基本信息

  • 批准号:
    EP/K034480/1
  • 负责人:
  • 金额:
    $ 446.5万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

We aim to build the world's biggest quantum photonic network, in which up to twenty photons, elementary particles of light, are connected to produce a large, controllable quantum system. This new tool will open up important realms of physics that have been too complex to study conventionally, such as biological energy transport and high-temperature superconductivity. Since photons are used to transport information, the network will also form a platform for revolutionary new quantum technologies like ultra-precise sensing and guaranteed-secure communication across the globe. To achieve such a large quantum system, we will introduce new techniques that fundamentally change the scalability of photonics. This will lay the ground for even larger networks in the future, establishing the UK as a leader in the nascent quantum technology industry.We have known for over a hundred years that atoms and molecules don't move according to Newton's laws. Instead, they obey the laws of quantum mechanics. These laws are strange but they explain how chemical bonds form and why silicon chips can make computers. These insights drove a profound technological revolution in the 20th century, spanning extraordinary advances in medicine, telecoms, and computing. It is now clear that our current knowledge of quantum systems is just the tip of the iceberg. While we can understand quantum effects between just two particles exactly, or between many atoms in an approximate way, as is the case for a semiconductor transistor, large objects composed of many particles cannot be analysed in detail. They are too complicated, and in fact beyond a few atoms, they cannot even be simulated with a supercomputer. The problem is that quantum systems are fuzzy, in a sense, so each particle is a distribution, not a single point. To describe many particles requires distributions of distributions of distributions and so on. This explosion in complexity means that many interesting systems in nature - in biology and medicine, particle physics and materials science - have so far been largely closed to analysis. The only way to study complex quantum systems in detail is to build a machine that can create them in a tailored, controllable way, so that we can build models of the real systems we want to study.Over the past two decades, a new science of quantum information has developed. In addition to their application to problems in the natural sciences, it has been shown that large controllable quantum systems can underpin a host of transformative new technologies, including the possibility of quantum computers that are exponentially faster than today's best computers. Perhaps surprisingly, one of the most advanced approaches to quantum computation involves photons instead of atoms. Photons can easily be transported by optical fibres, which are a mature technology used for telecoms and the internet, and they experience almost no noise. Because of these advantages, optical quantum cryptography over short distances is already commercially available.To go further and realise the most ambitious goals of quantum information science, and to open up the investigation of complex quantum systems, many photons must be connected and precisely manipulated. We aim to meet this challenge by leveraging advanced fabrication methods developed for the modern telecoms industry to build a large-scale controllable quantum photonic network, at the level of around twenty photons. In particular, we will use silica integrated optics -- circuits for light written on small glass chips -- to connect photons with minimal losses. These will be joined to superconducting detectors that count photons with high efficiency, and novel quantum memories that can store photons and synchronise the network. Combining quantum memories with these highly efficient technologies will enable the network to operate with at an unprecedented scale, giving access to new physics and new technologies.
我们的目标是建立世界上最大的量子光子网络,其中多达20个光子,光的基本粒子,连接起来,产生一个大型的,可控的量子系统。这一新工具将开辟一些重要的物理学领域,这些领域过于复杂,无法进行常规研究,例如生物能量传输和高温超导性。由于光子被用来传输信息,该网络还将为革命性的新量子技术(例如超精确传感和地球仪上有保证的安全通信)形成一个平台。为了实现如此大的量子系统,我们将引入新技术,从根本上改变光子学的可扩展性。这将为未来更大的网络奠定基础,使英国成为新兴量子技术行业的领导者。一百多年前,我们就知道原子和分子不按照牛顿定律运动。相反,它们遵守量子力学定律。这些定律很奇怪,但它们解释了化学键是如何形成的,以及为什么硅芯片可以制造计算机。这些见解在世纪推动了一场深刻的技术革命,跨越了医学、电信和计算领域的非凡进步。现在很清楚,我们目前对量子系统的了解只是冰山一角。虽然我们可以精确地理解两个粒子之间的量子效应,或者近似地理解许多原子之间的量子效应,就像半导体晶体管的情况一样,但由许多粒子组成的大型物体无法详细分析。它们太复杂了,事实上,除了几个原子之外,它们甚至无法用超级计算机模拟。问题是量子系统在某种意义上是模糊的,所以每个粒子都是一个分布,而不是一个点。要描述许多粒子,就需要分布的分布的分布等等,这种复杂性的爆炸意味着自然界中许多有趣的系统--在生物学和医学、粒子物理学和材料科学中--迄今为止在很大程度上还无法分析。详细研究复杂量子系统的唯一方法是建造一台能够以定制的、可控的方式创造它们的机器,这样我们就可以构建我们想要研究的真实的系统的模型。在过去的二十年里,一门新的量子信息科学发展起来了。除了它们在自然科学问题中的应用外,已经证明大型可控量子系统可以支撑许多变革性的新技术,包括量子计算机的可能性,其速度比当今最好的计算机快得多。也许令人惊讶的是,量子计算最先进的方法之一涉及光子而不是原子。光子可以很容易地通过光纤传输,这是一种用于电信和互联网的成熟技术,并且它们几乎没有噪音。由于这些优点,短距离光量子密码术已经可以在商业上使用。为了进一步实现量子信息科学最雄心勃勃的目标,并开启对复杂量子系统的研究,必须将许多光子连接起来并进行精确操纵。我们的目标是通过利用为现代电信行业开发的先进制造方法来应对这一挑战,以建立一个大规模的可控量子光子网络,大约20个光子的水平。特别是,我们将使用硅集成光学-写在小玻璃芯片上的光电路-以最小的损失连接光子。这些将被连接到超导探测器,以高效率计数光子,以及可以存储光子并同步网络的新型量子存储器。将量子存储器与这些高效技术相结合,将使网络能够以前所未有的规模运行,从而获得新的物理和新技术。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhanced delegated computing using coherence
  • DOI:
    10.1103/physreva.93.032339
  • 发表时间:
    2015-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Stefanie Barz;V. Dunjko;Florian Schlederer;M. Moore;E. Kashefi;I. Walmsley
  • 通讯作者:
    Stefanie Barz;V. Dunjko;Florian Schlederer;M. Moore;E. Kashefi;I. Walmsley
Directly comparing entanglement-enhancing non-Gaussian operations
  • DOI:
    10.1088/1367-2630/17/2/023038
  • 发表时间:
    2015-02
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    T. Bartley;I. Walmsley
  • 通讯作者:
    T. Bartley;I. Walmsley
Qubit-Programmable Operations on Quantum Light Fields.
  • DOI:
    10.1038/srep15125
  • 发表时间:
    2015-10-15
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Barbieri M;Spagnolo N;Ferreyrol F;Blandino R;Smith BJ;Tualle-Brouri R
  • 通讯作者:
    Tualle-Brouri R
Multiphoton Tomography with Linear Optics and Photon Counting.
  • DOI:
    10.1103/physrevlett.121.250402
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    L. Banchi;W. Kolthammer;M. S. Kim-M. S.-Kim-2254361765
  • 通讯作者:
    L. Banchi;W. Kolthammer;M. S. Kim-M. S.-Kim-2254361765
Modelling non-markovian quantum processes with recurrent neural networks
  • DOI:
    10.1088/1367-2630/aaf749
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    L. Banchi;Edward Grant;Andrea Rocchetto;S. Severini
  • 通讯作者:
    L. Banchi;Edward Grant;Andrea Rocchetto;S. Severini
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ian Walmsley其他文献

Ian Walmsley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ian Walmsley', 18)}}的其他基金

REAGAN - Real-life applications with Gaussian boson sampling
REAGAN - 高斯玻色子采样的现实应用
  • 批准号:
    EP/Y029631/1
  • 财政年份:
    2024
  • 资助金额:
    $ 446.5万
  • 项目类别:
    Fellowship
QuICHE: Quantum information and communication with high-dimensional encoding
QuICHE:高维编码的量子信息与通信
  • 批准号:
    EP/T027177/1
  • 财政年份:
    2020
  • 资助金额:
    $ 446.5万
  • 项目类别:
    Research Grant
ESCHER: Establishing Supply Chains for Emergent Quantum Computers
埃舍尔:为新兴量子计算机建立供应链
  • 批准号:
    EP/R041865/1
  • 财政年份:
    2018
  • 资助金额:
    $ 446.5万
  • 项目类别:
    Research Grant
BBSRC IAA University of Oxford
BBSRC IAA 牛津大学
  • 批准号:
    BB/S50676X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 446.5万
  • 项目类别:
    Research Grant
University of Oxford: experimental equipment upgrade
牛津大学:实验设备升级
  • 批准号:
    EP/M02833X/1
  • 财政年份:
    2015
  • 资助金额:
    $ 446.5万
  • 项目类别:
    Research Grant
The DiPOLE Laser on the Helmholtz Beamline at XFEL
XFEL 亥姆霍兹光束线上的偶极激光器
  • 批准号:
    EP/M000508/1
  • 财政年份:
    2015
  • 资助金额:
    $ 446.5万
  • 项目类别:
    Research Grant
UK Quantum Technology Hub: NQIT - Networked Quantum Information Technologies
英国量子技术中心:NQIT - 网络量子信息技术
  • 批准号:
    EP/M013243/1
  • 财政年份:
    2014
  • 资助金额:
    $ 446.5万
  • 项目类别:
    Research Grant
Small items of research equipment at the University of Oxford
牛津大学的小型研究设备
  • 批准号:
    EP/K031503/1
  • 财政年份:
    2012
  • 资助金额:
    $ 446.5万
  • 项目类别:
    Research Grant
Towards Real Applications in Broadband Quantum Memories
走向宽带量子存储器的实际应用
  • 批准号:
    EP/J000051/1
  • 财政年份:
    2012
  • 资助金额:
    $ 446.5万
  • 项目类别:
    Research Grant
2010 Grant Balance Oxford
2010年牛津大学补助金余额
  • 批准号:
    EP/J016322/1
  • 财政年份:
    2011
  • 资助金额:
    $ 446.5万
  • 项目类别:
    Research Grant

相似国自然基金

水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
  • 批准号:
    31972875
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
  • 批准号:
    30971650
  • 批准年份:
    2009
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
  • 批准号:
    30800648
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
  • 批准号:
    30772435
  • 批准年份:
    2007
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目

相似海外基金

Improved optimization of covalent ligands using a novel implementation of quantum mechanics suitable for large ligand/protein systems.
使用适用于大型配体/蛋白质系统的量子力学的新颖实现改进了共价配体的优化。
  • 批准号:
    10601968
  • 财政年份:
    2023
  • 资助金额:
    $ 446.5万
  • 项目类别:
CAREER: Generation and detection of large-scale quantum entanglement on an integrated photonic chip
职业:在集成光子芯片上生成和检测大规模量子纠缠
  • 批准号:
    2238096
  • 财政年份:
    2023
  • 资助金额:
    $ 446.5万
  • 项目类别:
    Continuing Grant
Verified Simulation for Large Quantum Systems (VSL-Q)
大型量子系统的验证仿真 (VSL-Q)
  • 批准号:
    EP/Y005244/1
  • 财政年份:
    2023
  • 资助金额:
    $ 446.5万
  • 项目类别:
    Research Grant
Printed Infrared Quantum Dot Photodetectors and Large-scale Image Sensors
印刷红外量子点光电探测器和大型图像传感器
  • 批准号:
    DE230101711
  • 财政年份:
    2023
  • 资助金额:
    $ 446.5万
  • 项目类别:
    Discovery Early Career Researcher Award
Next generation free energy perturbation (FEP) calculations--enabled by a novel integration of quantum mechanics (QM) with molecular dynamics allowing a large QM region and no sampling compromises
下一代自由能微扰 (FEP) 计算——通过量子力学 (QM) 与分子动力学的新颖集成实现,允许较大的 QM 区域且不会影响采样
  • 批准号:
    10698836
  • 财政年份:
    2023
  • 资助金额:
    $ 446.5万
  • 项目类别:
Quantum-Assisted Flood Modeling: Pioneering Large-Scale Analysis for Enhanced Risk Assessment
量子辅助洪水建模:开创性大规模分析以增强风险评估
  • 批准号:
    10083669
  • 财政年份:
    2023
  • 资助金额:
    $ 446.5万
  • 项目类别:
    Small Business Research Initiative
ExpandQISE: Track 1: Scalable Quantum Gravimeters with Large-Momentum-Transfer Atom Interferometry
ExpandQISE:轨道 1:具有大动量转移原子干涉测量技术的可扩展量子重力仪
  • 批准号:
    2328663
  • 财政年份:
    2023
  • 资助金额:
    $ 446.5万
  • 项目类别:
    Standard Grant
Quantum Dynamics with Nuclear Quantum Effects: a Hhierarchical Methodology for Large Molecular Systems
具有核量子效应的量子动力学:大分子系统的层次方法论
  • 批准号:
    2308922
  • 财政年份:
    2023
  • 资助金额:
    $ 446.5万
  • 项目类别:
    Standard Grant
New principal infrastructure based on large-scale quantum computing
基于大规模量子计算的新主体基础设施
  • 批准号:
    23H03398
  • 财政年份:
    2023
  • 资助金额:
    $ 446.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Exploiting Quantum Computing for Large-Scale Transport Models
利用量子计算进行大规模运输模型
  • 批准号:
    10030783
  • 财政年份:
    2022
  • 资助金额:
    $ 446.5万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了