ADVANCED FLOW TECHNOLOGY FOR HEALTHCARE MATERIALS MANUFACTURING

用于医疗保健材料制造的先进流程技术

基本信息

  • 批准号:
    EP/M015157/1
  • 负责人:
  • 金额:
    $ 316.29万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Inorganic nanoparticles have the potential to dramatically modify existing materials while providing the capability to engineer a broad range of transformative new products. Exhibiting unique properties not encountered in bulk materials, inorganic nanoparticles present the opportunity to address, and the potential to overcome, some of the most pressing global challenges. This is leading to intense global competition to develop and commercialize nanoproducts with a variety of applications in healthcare, energy, transport and security, with the aim of acquiring a dominant market position in the nanotechnology sector. Nanoparticles offer ideal solutions for detecting and treating many diseases. They can be used as drug carriers, labelling and tracking agents, and vectors for gene therapy, hyperthermia treatment and magnetic resonance imaging contrast agents. Used as targeted drug-delivery systems, they can improve the performance of medicines already on the market. They enable the development of new therapeutic strategies such as anti-cancer drug delivery, extending product life cycles and reducing healthcare costs. In this proposal we focus on the manufacturing of gold nanoparticles (Au-NPs) and iron oxide magnetic nanoparticles (MNPs). These materials have existing applications in diagnostics and therapeutics. Bespoke monodispersed functionalised NPs offer new applications in antimicrobial surfaces (Au NPs plus dye) and in a new hyperthermia treatment for cancer (MNPs). UCL is at the forefront of the engineering approach to make nanoparticles as well as being world leading in magnetic hyperthermia and antimicrobial surfaces.Nanoparticles are conventionally synthesized in relatively small batch reactors. These systems are poorly controllable, leading to products that are hard to reproduce. Also, they do not lend themselves to expedient upscaling. Such problems are caused by the inefficient mixing and slow heat and mass transfer characterizing batch reactors, and by the difficulty of decoupling in time the various stages of the synthesis, particularly particle nucleation and growth. This research aims to design and demonstrate a new, sustainable and scalable approach for manufacturing high-value nanomaterials with advanced properties in a way that is controllable and reproducible and that does not involve significant upscaling issues. To attain this ambitious goal, we will integrate methods, skills and strengths of different disciplines (materials chemistry, engineering), seeking guidance from industrial partners and UK manufacturing centres. Giving us access to their state-of-the-art facilities, sharing their expertise and providing an application context for our work, they will further characterize the nanoparticles, evaluate their performance and facilitate pathways to manufacture and routes to market.There is currently a lot of research in developing novel materials, where the focus is on discovery but with little emphasis on manufacturing. Using chemical engineering principles and systems engineering methodologies within a multidisciplinary framework, our research will demonstrate not only the need to consider key physical phenomena (mixing, heat transfer etc.) in nanoparticles synthesis, but also how to account and address related manufacturing challenges from the outset. In this way, an important benefit of this project will be to provide a paradigm shift in nanoparticle synthesis and production and bridge the discovery-manufacturing divide.
无机纳米颗粒具有极大地改变现有材料的潜力,同时提供了设计广泛的变革性新产品的能力。无机纳米颗粒表现出块状材料所没有的独特性能,为解决和克服一些最紧迫的全球挑战提供了机会。这导致了激烈的全球竞争,以开发和商业化在医疗保健、能源、运输和安全方面具有各种应用的纳米产品,目的是在纳米技术部门获得主导市场地位。纳米粒子为检测和治疗许多疾病提供了理想的解决方案。它们可以用作药物载体、标记和跟踪剂,以及基因治疗、热疗治疗和磁共振成像造影剂的载体。作为靶向给药系统,它们可以改善市场上已有药物的性能。它们有助于开发新的治疗策略,如抗癌药物输送、延长产品生命周期和降低医疗成本。在本提案中,我们专注于金纳米粒子(Au-NPs)和氧化铁磁性纳米粒子(MNPs)的制造。这些材料在诊断和治疗方面已有应用。定制的单分散功能化NPs在抗菌表面(Au NPs加染料)和新的癌症热疗(MNPs)方面提供了新的应用。伦敦大学学院在制造纳米颗粒的工程方法以及磁热疗和抗菌表面方面处于世界领先地位。纳米颗粒通常是在相对小批量的反应器中合成的。这些系统的可控性很差,导致产品难以复制。此外,它们也不适合权宜之计的升级。这些问题是由于间歇式反应器的混合效率低下和传热传质缓慢,以及合成的各个阶段,特别是颗粒成核和生长难以及时解耦造成的。这项研究旨在设计和展示一种新的、可持续的、可扩展的方法,以一种可控的、可复制的、不涉及重大升级问题的方式,制造具有先进性能的高价值纳米材料。为了实现这一雄心勃勃的目标,我们将整合不同学科(材料化学、工程)的方法、技能和优势,并寻求工业合作伙伴和英国制造中心的指导。让我们使用他们最先进的设施,分享他们的专业知识,并为我们的工作提供应用环境,他们将进一步表征纳米颗粒,评估其性能,并促进制造途径和市场途径。目前在开发新材料方面有很多研究,重点是发现,但很少强调制造。在多学科框架内使用化学工程原理和系统工程方法,我们的研究将证明不仅需要考虑纳米颗粒合成中的关键物理现象(混合,传热等),还需要从一开始就考虑和解决相关的制造挑战。通过这种方式,这个项目的一个重要好处将是提供纳米粒子合成和生产的范式转变,并弥合发现和制造之间的鸿沟。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A model for the formation of gold nanoparticles in the citrate synthesis method
  • DOI:
    10.1016/j.ces.2018.06.046
  • 发表时间:
    2018-12-14
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Agunloye, Emmanuel;Panariello, Luca;Mazzei, Luca
  • 通讯作者:
    Mazzei, Luca
Room Temperature Synthesis of Phosphine-Capped Lead Bromide Perovskite Nanocrystals without Coordinating Solvents
Shape controlled iron oxide nanoparticles: inducing branching and controlling particle crystallinity
  • DOI:
    10.1039/d0ce01291b
  • 发表时间:
    2021-01-21
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    AbuTalib, Nur Hanisah;LaGrow, Alec P.;Nguyen Thi Kim Thanh
  • 通讯作者:
    Nguyen Thi Kim Thanh
Structural, optical, electrical, dielectric, molecular vibrational and magnetic properties of La3+ doped Mg-Cd-Cu ferrites prepared by Co-precipitation technique
  • DOI:
    10.1016/j.ceramint.2022.01.313
  • 发表时间:
    2022-04-06
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Arshad, Muhammad Imran;Hasan, M. S.;Nguyen Thi Kim Thanh
  • 通讯作者:
    Nguyen Thi Kim Thanh
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Asterios Gavriilidis其他文献

Correction: Seeded-growth synthesis of 20–60 nm monodisperse citrate-capped gold nanoparticles in a millifluidic reactor
  • DOI:
    10.1007/s41981-025-00350-7
  • 发表时间:
    2025-04-04
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Mabel Cornwell;Spyridon Damilos;Ivan P. Parkin;Asterios Gavriilidis
  • 通讯作者:
    Asterios Gavriilidis
Synthesis of nanoparticles in a continuous flow antifouling reactor employing an internal SLIPS coating
在采用内部 slippery liquid-infused porous surface(SLIPS, slippery liquid-infused多孔表面)涂层的连续流防污反应器中合成纳米粒子
  • DOI:
    10.1016/j.cej.2025.162836
  • 发表时间:
    2025-06-15
  • 期刊:
  • 影响因子:
    13.200
  • 作者:
    Mabel Cornwell;Sayan Pal;Georgios Gkogkos;Ivan P. Parkin;Asterios Gavriilidis
  • 通讯作者:
    Asterios Gavriilidis
Multistep non-fouling continuous flow synthesis and PEG-functionalisation of biocompatible iron oxide nanoparticles for magnetic hyperthermia, photothermal heating and antifungal activity
  • DOI:
    10.1007/s41981-025-00355-2
  • 发表时间:
    2025-06-02
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Sayan Pal;Georgios Gkogkos;Jacopo Piovesan;Zoe Whiteley;Maximilian O. Besenhard;Liudmyla Storozhuk;Martin R. Lees;Nguyen Thi Kim Thanh;Duncan Q. M. Craig;Alexander J. MacRobert;Sudaxshina Murdan;Asterios Gavriilidis
  • 通讯作者:
    Asterios Gavriilidis

Asterios Gavriilidis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Asterios Gavriilidis', 18)}}的其他基金

MAGNETIC NANOPARTICLE ENGINEERING via MICROREACTION TECHNOLOGY
通过微反应技术进行磁性纳米粒子工程
  • 批准号:
    EP/M018016/1
  • 财政年份:
    2015
  • 资助金额:
    $ 316.29万
  • 项目类别:
    Research Grant
Fluid processes in smart microengineered devices: Hydrodynamics and thermodynamics in microspace
智能微工程设备中的流体过程:微空间中的流体动力学和热力学
  • 批准号:
    EP/L027232/1
  • 财政年份:
    2015
  • 资助金额:
    $ 316.29万
  • 项目类别:
    Research Grant
Sustainable Manufacturing in Multiphase Continuous Reactors: Aerobic Oxidations
多相连续反应器中的可持续制造:有氧氧化
  • 批准号:
    EP/L003279/1
  • 财政年份:
    2013
  • 资助金额:
    $ 316.29万
  • 项目类别:
    Research Grant
CATALYTIC TRANSFORMATION OF BIO-DERIVED PLATFORM MOLECULES
生物衍生平台分子的催化转化
  • 批准号:
    EP/J017833/1
  • 财政年份:
    2012
  • 资助金额:
    $ 316.29万
  • 项目类别:
    Research Grant
SONOCRYSTALLISATION IN CONTINUOUS FLOW MICROCHANNEL CONTACTORS
连续流微通道接触器中的超声结晶
  • 批准号:
    EP/I031480/1
  • 财政年份:
    2011
  • 资助金额:
    $ 316.29万
  • 项目类别:
    Research Grant
Challenging Ozonolysis
具有挑战性的臭氧分解
  • 批准号:
    EP/G027447/1
  • 财政年份:
    2009
  • 资助金额:
    $ 316.29万
  • 项目类别:
    Research Grant
DEVELOPMENT OF HIGHLY ACTIVE AND SELECTIVE GOLD PALLADIUM ALLOY CATALYSTS AIDED BY MICROREACTION TECHNOLOGY
微反应技术辅助开发高活性、选择性金钯合金催化剂
  • 批准号:
    EP/G008442/1
  • 财政年份:
    2009
  • 资助金额:
    $ 316.29万
  • 项目类别:
    Research Grant

相似国自然基金

肝硬化患者4D Flow MRI血流动力学与肝脂肪和铁代谢的交互机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于4D Flow MRI 技术联合HA/cRGD-GD-LPs对比剂增强扫描诊断肝纤维化分期的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于4 D-Flow MRI评估吻合口大小对动静脉瘘的血流动力学以及临床预后的影响
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
构建4D-Flow-CFD仿真模型定量评估肝硬化门静脉血流动力学
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于4D-FLOW MRI实现特发性颅内压增高患者静脉窦无创测压和血流动力学分析
  • 批准号:
    82301457
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
结合4D flow的多模态心脏磁共振成像在肥厚型心肌病中的应用研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
驻高海拔地区铁路建设工程项目员工的Flow体验、国家认同与心理韧性:积极环境心理学视角
  • 批准号:
    72271205
  • 批准年份:
    2022
  • 资助金额:
    44 万元
  • 项目类别:
    面上项目
基于Flow-through流场的双离子嵌入型电容去离子及其动力学调控研究
  • 批准号:
    52009057
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
主动脉瓣介导的血流模式致升主动脉重构的4D Flow MRI可视化预测模型研究
  • 批准号:
    82071991
  • 批准年份:
    2020
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
基于4D Flow MRI探讨侧支循环影响颈内动脉重塑的机制研究
  • 批准号:
    81801139
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of pipeline monitoring technology for highly advanced flow assurance of offshore resources
开发管道监测技术以实现海上资源的高度先进的流量保证
  • 批准号:
    23H01621
  • 财政年份:
    2023
  • 资助金额:
    $ 316.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Establishment of AI forecasting technology for the dam storage volume, rainfall, and river flow in Japan and other Asian countries
建立日本等亚洲国家的大坝蓄水量、降雨量、河川流量的人工智能预测技术
  • 批准号:
    22KK0160
  • 财政年份:
    2022
  • 资助金额:
    $ 316.29万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
OPTIMUM (Oxidative Flow Platform Utilising Porous liquids, 3D printing and Microbubble Technology at Almac)
OPTIMUM(Almac 利用多孔液体、3D 打印和微泡技术的氧化流平台)
  • 批准号:
    MR/W001764/1
  • 财政年份:
    2022
  • 资助金额:
    $ 316.29万
  • 项目类别:
    Fellowship
Deployment of ultrasonic melt flow enhancement technology to achieve energy savings of 27% across the energy intensive, injection moulded consumer packaging sector
部署%20of%20超声波%20熔化%20flow%20增强%20技术%20to%20实现%20能源%20节省%20of%2027%%20跨%20%20能源%20集约、%20注射%20模制%20消费者%20包装%20行业
  • 批准号:
    98472
  • 财政年份:
    2022
  • 资助金额:
    $ 316.29万
  • 项目类别:
    Collaborative R&D
Enhancing Pediatric Diagnosis of Tuberculosis with FLOW Technology
利用 FLOW 技术增强儿科结核病诊断
  • 批准号:
    10548952
  • 财政年份:
    2022
  • 资助金额:
    $ 316.29万
  • 项目类别:
Deployment of ultrasonic melt flow enhancement technology to achieve energy savings of 27% across the energy intensive, injection moulded food packaging sector
部署%20of%20超声波%20熔化%20flow%20增强%20技术%20to%20实现%20能源%20节省%20of%2027%%20跨%20%20能源%20集约、%20注塑%20模制%20食品%20包装%20行业
  • 批准号:
    95895
  • 财政年份:
    2022
  • 资助金额:
    $ 316.29万
  • 项目类别:
    Collaborative R&D
Next-Generation Ultrasound Technology for Volume Flow Quantification
用于体积流量定量的下一代超声技术
  • 批准号:
    RGPIN-2022-04157
  • 财政年份:
    2022
  • 资助金额:
    $ 316.29万
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid modelling based digital technology for process flow diagram development
基于混合建模的流程图开发数字技术
  • 批准号:
    2853083
  • 财政年份:
    2022
  • 资助金额:
    $ 316.29万
  • 项目类别:
    Studentship
Enabling Technology to Study Mechanosensitive and Mechanoresistant Cancer Cells in Flow
在流动中研究机械敏感和机械抗性癌细胞的技术
  • 批准号:
    10306077
  • 财政年份:
    2021
  • 资助金额:
    $ 316.29万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了