Morita equivalence classes of blocks
森田块的等价类
基本信息
- 批准号:EP/M015548/1
- 负责人:
- 金额:$ 40.5万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A group is an abstract structure which can arise in almost any area of mathematics or in physics. As such it is universal and can be a means of bridging disparate areas. Some examples of groups are the integers (with addition), the symmetries of a polyhedron (with composition of symmetries) or the fundamental group of paths on a surface. To understand these abstract objects, we need to represent a group in some way. We do this by considering it as a collection of transformations of space. The group may already have natural representations, as happens often in physics, e.g., orthogonal groups, or they may be obscure and involve transformations of very high dimensional spaces (for example the 'monster' sporadic group requires a 196,883 dimensional space). Further we need to study not just one representation of a group, but the entirety of the representations of that group. An object capturing this information is a module category. Our interest is in the modular representations of a group, that is those over a field of prime characteristic p. Here it makes sense to refine our module category. Instead of studying the group itself, we study its blocks. Study of the module category of a group amounts to study of the module category of each block in turn. An invariant associated to a block is its defect group. In a block with trivial defect group all representations are essentially sums of copies of a single representation, but the structure of representations of a block of large defect can be very complex. We compare module categories of blocks using Morita equivalence. Morita equivalent module categories are in a sense 'the same'. A fundamental question is addressed by Donovan's conjecture, posed in the 1970's, which predicts that for a fixed defect group there are only finitely many Morita equivalence classes of blocks. Donovan's conjecture is both simple and fundamental to our perception of the subject. If it is true, then in theory we could classify module categories of blocks, whilst if it is false, then the subject is even wilder and more unpredictable than we imagined.The PI, in a recent paper with Kessar, Külshammer and Sambale, gave a classification up to Morita equivalence of blocks of quasisimple groups with abelian defect groups when the prime p is 2. This is a tremendous tool not only for verifying cases of Donovan's conjecture, but for going further and classifying the Morita equivalence classes of blocks with a given defect group. This has been done in very few meaningful cases and doing so would shine a light in an area which is currently very dark. A large part of this proposal is to exploit the above paper to give precise descriptions of the Morita equivalence classes in a range of cases, as well as to prove Donovan's conjecture in an even wider range of cases. It is also to investigate the general phenomenon of Morita equivalence between blocks of finite groups, particularly in the situation of Galois conjugate blocks as considered by Kessar. Here the situation is very mysterious, in that there exist Galois conjugate blocks (which are almost indistinguishable) that are not Morita equivalent. This will involve some algebraic number theory, and is crucial to our understanding of Donovan's conjecture.The principal outcome of the project will be detailed information on Morita equivalence classes, providing an invaluable resource for future research. A website will be constructed to make this detailed information available and to record progress on Donovan's conjecture and the classification of Morita equivalence classes in general. The project involves knowledge of finite groups of Lie type, of homological algebra, number theory, group theory and representation theory, and will benefit from collaborations with the strong algebra community both in the UK and outside.
群是一种抽象的结构,几乎可以出现在任何数学或物理领域。因此,它具有普遍性,可以成为弥合不同领域的一种手段。群的一些例子是整数(有加法),多面体的对称性(有对称性的合成)或曲面上路径的基本群。为了理解这些抽象对象,我们需要以某种方式表示一个组。我们这样做是因为把它看作是空间变换的集合。这个群可能已经有了自然的表示,就像物理学中经常发生的那样,例如,正交群,或者它们可能是模糊的,涉及非常高维空间的变换(例如,“怪物”零星群需要196,883维空间)。此外,我们不仅需要研究群的一个表示,而且需要研究该群的所有表示。捕获这些信息的对象是模块类别。我们感兴趣的是一个群的模表示,即那些在素特征p的域上的模表示。我们不研究群体本身,而是研究它的区块。对一个组的模范畴的研究,相当于对各个块的模范畴的依次研究。与块相关联的不变量是其缺陷群。在具有平凡缺陷群的块中,所有表示基本上是单个表示的副本的和,但是具有大缺陷的块的表示的结构可以非常复杂。我们比较模块类别的块使用森田等价。森田等价模范畴在某种意义上是“相同的”。一个基本的问题是解决多诺万的猜想,提出了在20世纪70年代,它预测,对于一个固定的缺陷组只有1000多个森田等价类的块。多诺万猜想对于我们理解这个问题来说既简单又基本。如果它是真的,那么在理论上我们可以分类模块类别的块,而如果它是假的,那么这个主题甚至比我们想象的更怀尔德和更不可预测。PI,在最近的一篇论文中与Kessar,Külshammer和Sambale,给出了一个分类高达森田等价块的拟单群与阿贝尔亏损群时,素数p是2。这是一个巨大的工具,不仅用于验证多诺万猜想的情况下,但进一步分类的森田等价类块与给定的缺陷组。在极少数有意义的情况下这样做了,这样做将在一个目前非常黑暗的地区点亮一盏灯。这一建议的很大一部分是利用上述文件给精确的描述森田等价类在一系列的情况下,以及证明多诺万猜想在更广泛的情况下。这也是调查的一般现象,森田等价块之间的有限群,特别是在伽罗瓦共轭块的情况下,考虑由Kessar。这里的情况是非常神秘的,因为存在伽罗瓦共轭块(这是几乎无法区分的),不是森田等价。这将涉及到一些代数数论,是至关重要的,我们了解多诺万的猜想。该项目的主要成果将是详细的信息森田等价类,为未来的研究提供了宝贵的资源。将建立一个网站,提供这些详细信息,并记录多诺万猜想和森田等价类分类的进展。该项目涉及李型有限群,同调代数,数论,群论和表示论的知识,并将受益于与强大的代数社区在英国和国外的合作。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Loewy lengths of blocks with abelian defect groups
具有阿贝尔缺陷群的块的洛威长度
- DOI:10.1090/bproc/28
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Eaton C
- 通讯作者:Eaton C
Morita equivalence classes of $2$-blocks of defect three
森田等价类 $2$-缺陷三块
- DOI:10.1090/proc/12886
- 发表时间:2015
- 期刊:
- 影响因子:1
- 作者:Eaton C
- 通讯作者:Eaton C
Towards Donovan's conjecture for abelian defect groups
走向多诺万关于阿贝尔缺陷群的猜想
- DOI:10.1016/j.jalgebra.2018.09.043
- 发表时间:2019
- 期刊:
- 影响因子:0.9
- 作者:Eaton C
- 通讯作者:Eaton C
Donovan's conjecture, blocks with abelian defect groups and discrete valuation rings
多诺万猜想,具有阿贝尔缺陷群和离散估值环的块
- DOI:10.1007/s00209-019-02354-1
- 发表时间:2019
- 期刊:
- 影响因子:0.8
- 作者:Eaton C
- 通讯作者:Eaton C
Donovan's conjecture and blocks with abelian defect groups
多诺万猜想和阿贝尔缺陷群的块
- DOI:10.48550/arxiv.1803.03539
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Eaton C
- 通讯作者:Eaton C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Eaton其他文献
PROSPECTIVE ASSOCIATION OF HEART RATE VARIABILITY AND HEART FAILURE, HEART FAILURE WITH PRESERVED EJECTION FRACTION, HEART FAILURE WITH REDUCED EJECTION FRACTION IN POSTMENOPAUSAL WOMEN
- DOI:
10.1016/s0735-1097(18)31395-0 - 发表时间:
2018-03-10 - 期刊:
- 影响因子:
- 作者:
Reema Qureshi;Ahmed S. Mohamed;Mary Roberts;Lisa W. Martin;Matthew A. Allison;Michael J. LaMonte;Simin Liu;Zhan-Peng Huang;JoAnn Manson;Charles Eaton - 通讯作者:
Charles Eaton
THE LONG-TERM PREDICTIVE VALUE OF SERUM INTERLEUKIN-6 LEVELS FOR NINE CARDIOVASCULAR OUTCOMES AND MORTALITY: THE CROSS COHORT COLLABORATION (CCC)
血清白细胞介素-6 水平对 9 种心血管结局和死亡率的长期预测价值:交叉队列协作研究(CCC)
- DOI:
10.1016/s0735-1097(25)00985-4 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:22.300
- 作者:
Zhiqi Yao;Erfan Tasdighi;Zeina Dardari;Kunal Jha;Ngozi Osuji;Tanuja Rajan;Ellen Boakye;Eleanor Marie Simonsick;Charles Eaton;Michael J. Lamonte;Peggy M. Cawthon;Bruce Psaty;Suzanne Judd;Vasan S. Ramachandran;Michael J. Blaha - 通讯作者:
Michael J. Blaha
292 - Walking for Exercise Prevents Greater Walking Difficulty - Data from the Osteoarthritis Initiative
292 - 步行锻炼可预防步行困难加剧 - 来自骨关节炎倡议组织的数据
- DOI:
10.1016/j.joca.2025.02.298 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:9.000
- 作者:
Grace Lo;Timothy McAlindon;Matthew S. Harkey;Andrea Kriska;Bonny Rockette-Wagner;Charles Eaton;Marc C. Hochberg;C. Kent Kwoh;Michael Nevitt;Jeffrey Driban - 通讯作者:
Jeffrey Driban
Further characterization of the plasma lipoprotein(a) distribution
血浆脂蛋白(a)分布的进一步表征
- DOI:
- 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
W. Craig;S. Poulin;A. Bostom;Charles Eaton;J. Laurino;T. Ledue;R. Ritchie - 通讯作者:
R. Ritchie
115 - Gender and Age Differences in the Associations between Cortical Thickness and Hand Osteoarthritis Severity: Date from the Osteoarthritis Initiative
- DOI:
10.1016/j.joca.2024.02.126 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:
- 作者:
Jeffrey Duryea;Jeffrey Driban;Charles Eaton;Lena Schaefer;Quinley Miao;Mary Roberts;Jane Cauley;Timothy McAlindon;Stacy Smith - 通讯作者:
Stacy Smith
Charles Eaton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Eaton', 18)}}的其他基金
Representation theory over local rings
局部环的表示论
- 批准号:
EP/T004606/1 - 财政年份:2019
- 资助金额:
$ 40.5万 - 项目类别:
Research Grant
相似海外基金
(Morita) Equivalence Classes of Polynomials
(森田)多项式的等价类
- 批准号:
548971-2020 - 财政年份:2020
- 资助金额:
$ 40.5万 - 项目类别:
University Undergraduate Student Research Awards
Effective generalized equivalence groups of classes of different equations
不同方程类的有效广义等价组
- 批准号:
544609-2019 - 财政年份:2019
- 资助金额:
$ 40.5万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Diophantine approximation, chromatic number, and equivalence classes of separated nets
丢番图近似、色数和分离网的等价类
- 批准号:
EP/L001462/1 - 财政年份:2013
- 资助金额:
$ 40.5万 - 项目类别:
Research Grant
The structure of a tannakian category formed by equivalence classes of systems of linear inequalities over a number field and its application to diophantine approximation
由数域上线性不等式组的等价类形成的坦纳基范畴的结构及其在丢番图近似中的应用
- 批准号:
25400029 - 财政年份:2013
- 资助金额:
$ 40.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Diophantine approximation, chromatic number, and equivalence classes of separated nets
丢番图近似、色数和分离网的等价类
- 批准号:
EP/L001462/2 - 财政年份:2013
- 资助金额:
$ 40.5万 - 项目类别:
Research Grant
Efficient calculation of explicit model predictive control laws using topological equivalence classes of critical points
使用临界点的拓扑等价类有效计算显式模型预测控制律
- 批准号:
234842388 - 财政年份:2013
- 资助金额:
$ 40.5万 - 项目类别:
Research Grants
THE RESEARCH OF THE STRUCTURES AND INVARIANTS OF STABLE EQUIVALENCE CLASSES OF KNOTS IN THICKENED SURFACES
加厚表面结稳定等价类结构及不变量的研究
- 批准号:
22540093 - 财政年份:2010
- 资助金额:
$ 40.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of the structure of a tannakian category formed by equivalence classes of systems of linear inequalities over a number field
由数域上线性不等式组的等价类形成的坦纳基范畴的结构研究
- 批准号:
20540030 - 财政年份:2008
- 资助金额:
$ 40.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments of LearningAlgorithms for Deterministic Context-Free Languages in Some Classes and Their Applications
某些类别的确定性上下文无关语言学习算法的进展及其应用
- 批准号:
18500108 - 财政年份:2006
- 资助金额:
$ 40.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




