POROUS ALUMINIUM METAMATERIALS (POAMS): A VERSATILE, SELF-ASSEMBLED PLASMONIC PLATFORM

多孔铝超材料 (POAMS):多功能自组装等离子体平台

基本信息

  • 批准号:
    EP/M01780X/1
  • 负责人:
  • 金额:
    $ 12.78万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

The challenges faced by an ever expanding society must be addressed by technological progress. Issues of longstanding importance, such as health and medicine, currently require advances in both treatment and diagnostics that are inexpensive and therefore widely distributable. In order to have minor environmental impact, technological advancements must consider their impact in terms of both energy efficiency, sustainability and cost. To meet these challenges, adapt successfully and fulfil current and future requirements, novel materials designed to have unique and functional properties must be manufactured, investigated and implemented. In the recent past, due to significant research, there has been a revolution in the ability to control the structure and composition of materials at smaller and smaller dimensions. Nowhere has this been as striking as the fabrication of optical metamaterials, where bottom-up material design produces optical properties that are not found in naturally occuring materials. Attention grabbing phenomena such as optical cloaking and perfect lensing, but these demonstrations belie the huge range of possible applications.At tiny scales, light's interaction with materials provides a wealth of interesting phenomena and despite worldwide research we are only beginning to realise the full potential. One area already delivering healthcare diagnostics to the market is plasmonics, involving the interaction of light with metal surfaces and particles, allowing it to be concentrated and manipulated at ever decreasing length scales. This project aims to explore a recently discovered type of optical metamaterial based on metallic nanoholes. The fabrication begins using thin aluminium layers which are converted into aluminium oxide and simultaneously perforated with holes by a simple electrochemical process. The holes are only a few tens of nanometres in size; the size and separation of these pores may be varied in process. By using simple techniques, a layer of thin aluminium may be left underneath the porous layer. Afterwards, it is a simple step to use the porous template as a mask and expose the system to an argon ion beam. This creates an array of holes, much smaller in size than the wavelength of light, in the underlying aluminium. The process allows broad control over the hole size and separation via the anodisation step, enabling both a new kind of metamaterial to be fabriacted for use from the deep-UV to visible spectral range. A self-assembled process, this method can easily produce large areas of incredible precision and is inexpensive.Current research primarily uses gold or silver for metamaterials due to their attractive properties despite their expense. This project is instead based on aluminium, the most abundant metal and is suitable for many applications. In IT, overcoming the density and speed limitations facing conventional electronic circuitry requires the use of optical circuitry using optical signals. Aluminium, with excellent properties in the UV can help achieve this, as the wavelength is smaller, so will be the resulting devices, potentially helping to realise new optical circuitry to compete with electronics. Most importantly, and a key objective of this project, is determining the suitability of novel, affordable materials for the detection of chemical and biological agents. This can have huge implications for medical research by assisting diagnosis and prognosis and these materials have the potential to monitor bio-chemical and chemical reactions with high precision, which may be enhanced by UV effects present in biological and organic molecules. These examples highlight the versatility of optical metamaterials that may only minute differences in dimensions and composition.
一个不断扩大的社会所面临的挑战必须通过技术进步来解决。长期重要的问题,如健康和医学,目前需要在治疗和诊断方面取得进展,而且费用低廉,因此可以广泛传播。为了对环境产生较小的影响,技术进步必须从能源效率、可持续性和成本方面考虑其影响。为了迎接这些挑战,成功地适应并满足当前和未来的需求,必须制造、研究和实施具有独特和功能特性的新型材料。最近,由于大量的研究,在越来越小的维度上控制材料的结构和组成的能力发生了一场革命。没有任何地方比光学超材料的制造更引人注目了,在光学超材料的制造中,自下而上的材料设计产生了自然材料中找不到的光学特性。人们注意到了光学隐形和完美透镜等吸引注意力的现象,但这些演示掩盖了可能的巨大应用范围。在微小的尺度上,光与材料的相互作用提供了丰富的有趣现象,尽管世界各地都在进行研究,但我们才刚刚开始认识到全部潜力。已经向市场提供医疗诊断的一个领域是等离子激元,它涉及光与金属表面和粒子的相互作用,使其能够以不断减小的长度尺度进行集中和操纵。该项目旨在探索一种最近发现的基于金属纳米孔的光学超材料。制造开始使用薄的铝层,这些铝层被转化为氧化铝,并通过简单的电化学过程同时穿孔。这些孔的大小只有几十纳米;这些孔的大小和间距在加工过程中可能会有所不同。通过使用简单的技术,可以在多孔层的下面留下一层薄铝。然后,使用多孔模板作为掩膜,并将系统暴露在Ar离子束中,这是一个简单的步骤。这就在底层的铝上形成了一个孔洞阵列,其大小比光波长小得多。该工艺允许通过阳极氧化步骤对孔大小和分离进行广泛控制,使这两种新型超材料都能够被加工成可用于从深紫外光到可见光光谱范围的超材料。这种方法是一种自组装工艺,可以很容易地产生大面积的令人难以置信的精度,而且价格低廉。目前的研究主要使用金或银作为超材料,因为它们的性能很吸引人,尽管它们的成本很高。相反,该项目以铝为基础,铝是最丰富的金属,适合许多应用。在IT领域,要克服传统电子电路面临的密度和速度限制,需要使用使用光信号的光电路。铝在紫外线中具有优异的性能,可以帮助实现这一点,因为波长更小,由此产生的设备也将如此,可能有助于实现新的光电路,与电子产品竞争。最重要的是,也是该项目的一个关键目标,是确定新的、负担得起的材料是否适合检测化学和生物制剂。这可以通过辅助诊断和预后对医学研究产生巨大的影响,这些材料有可能高精度地监测生物化学反应和化学反应,生物和有机分子中存在的紫外线效应可能会增强这一点。这些例子突出了光学超材料的多功能性,它们可能只在尺寸和组成上有微小的差异。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Self-assembled hyperbolic metamaterials in the deep UV (Conference Presentation)
深紫外自组装双曲超材料(会议演示)
  • DOI:
    10.1117/12.2228360
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Skov Cambpell S
  • 通讯作者:
    Skov Cambpell S
Large-area fabrication and characterisation of ultraviolet regime metamaterials manufactured using self-assembly techniques (Conference Presentation)
使用自组装技术制造的紫外区超材料的大面积制造和表征(会议演示)
  • DOI:
    10.1117/12.2227941
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wardley W
  • 通讯作者:
    Wardley W
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wayne Dickson其他文献

Wayne Dickson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Developing aluminium-sulfur batteries with high voltage and low cost
开发高电压、低成本铝硫电池
  • 批准号:
    DE240100952
  • 财政年份:
    2024
  • 资助金额:
    $ 12.78万
  • 项目类别:
    Discovery Early Career Researcher Award
Impact of impurity elements on the corrosion performance of high strength 6xxx aluminium alloys
杂质元素对高强6xxx铝合金腐蚀性能的影响
  • 批准号:
    2906344
  • 财政年份:
    2024
  • 资助金额:
    $ 12.78万
  • 项目类别:
    Studentship
Aluminium at the centre of sustainable catalysis
铝是可持续催化的核心
  • 批准号:
    FT230100565
  • 财政年份:
    2024
  • 资助金额:
    $ 12.78万
  • 项目类别:
    ARC Future Fellowships
EPSRC-SFI Aluminium-Rich Nitride Electronics (ARNE)
EPSRC-SFI 富铝氮化物电子器件 (ARNE)
  • 批准号:
    EP/X036901/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.78万
  • 项目类别:
    Research Grant
Advanced recycling of aluminium by controlling precipitation of impurity elements
通过控制杂质元素析出实现铝的高级回收
  • 批准号:
    23K17062
  • 财政年份:
    2023
  • 资助金额:
    $ 12.78万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
H2GLASS - advancing Hydrogen (H2) technologies and smart production systems TO decarbonise the GLass and Aluminium SectorS
H2GLASS - 先进的氢 (H2) 技术和智能生产系统,使玻璃和铝行业脱碳
  • 批准号:
    10063137
  • 财政年份:
    2023
  • 资助金额:
    $ 12.78万
  • 项目类别:
    EU-Funded
Reclamex - A Feasibility Study for a UK Aluminium Smelting Wastes Treatment Facility
Reclamex - 英国铝冶炼废物处理设施的可行性研究
  • 批准号:
    10064159
  • 财政年份:
    2023
  • 资助金额:
    $ 12.78万
  • 项目类别:
    Collaborative R&D
An innovative process to enable the automated manufacture of aluminium-tin alloy for machinery bearing elements
一种创新工艺,可实现机械轴承元件用铝锡合金的自动化制造
  • 批准号:
    10084682
  • 财政年份:
    2023
  • 资助金额:
    $ 12.78万
  • 项目类别:
    Collaborative R&D
Transition Metal/Aluminium Bimetallics for Cooperative Catalysis
用于协同催化的过渡金属/铝双金属
  • 批准号:
    EP/X020800/1
  • 财政年份:
    2023
  • 资助金额:
    $ 12.78万
  • 项目类别:
    Research Grant
Design and Development of Innovative, Long-life, Slimline Aluminium Door
创新、长寿命、超薄铝门的设计和开发
  • 批准号:
    10075792
  • 财政年份:
    2023
  • 资助金额:
    $ 12.78万
  • 项目类别:
    Grant for R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了