Open Domain Statistical Spoken Dialogue Systems
开放域统计口语对话系统
基本信息
- 批准号:EP/M018946/1
- 负责人:
- 金额:$ 76.89万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Spoken Dialogue Systems (SDS) encompass the technologies required to build effective man-machine interfaces which depend primarily on voice. To date they have mostly been deployed in telephone-based call centre applications such as banking, billing queries and travel information and they are built using hand-crafted rules.The recent introduction of Apple Siri and Google Now has moved voice-based interfaces into the main-stream. These virtual personal assistants (VPAs) offer the potential to revolutionise the way we interact with machines, and they open the way to properly control and manage the emerging Internet of Things - the rapidly growing network of smart devices which lack any form of conventional user interface. However, current personal assistants are built using the same technology as limited domain spoken dialogue systems. They are not capable of sustaining conversational dialogues except within the selected limited domains which they have been explicitly programmed to handle.Very recent work on statistical SDS has demonstrated that it is not only possible for such a system to adapt and improve performance within the domain for which it has been designed but it is also possible for the system to automatically extend its coverage to include new, hitherto unseen concepts. This suggests that it should be possible to build on the progress achieved in the development of limited domain statistical SDS to design a radically new form of spoken dialogue system (and hence VPA) which is able to extend and adapt with use to cover an ever-wider range of conversational topics. The design of such a system is the focus of this research proposal.The key idea is to integrate the latest statistical dialogue technology into a wide coverage knowledge graph (such as freebase) which contains not only ontological information about entities but also the operations that can be applied to those entities (e.g. find flight information, book a hotel room, buy an ebook, etc. ).The implementation of a single monolithic spoken dialogue system capable of interpreting and responding to every conceivable user request is simply not practicable. Hence, rather than simply trying to broaden the coverage of existing SDS, a novel distributed system architecture is proposed with three key features:1. the three essential components of an SDS (semantic decoder, dialogue manager and response generator) are distributed across the knowledge-graph. In essence, every node in the graph has the capability to recognise when it is being referred to and have the capability to respond appropriately.2. when the user speaks, all semantic decoders are listening, based on the activation levels of the decoder outputs, a topic tracker identifies which concept is in focus and activates its dialogue policy.3. all components are statistical enabling them to be adapted automatically on-line using unsupervised adaptation. Data sparsity is managed by ensuring that the top level nodes in the class hierarchy have well-trained components. Initially, lower level more specialised concepts simply inherit the required statistical models from their super-classes. As the system interacts with users and more data is collected, lower level components acquire sufficient data to train their own dedicated statistical models.The end result is a system that continually learns on-line. It starts with a limited and stilted conversational style, but the more it is used, the more fluent it becomes, and as users explore new topics, the system learns to adapt and extend its capability to handle those new topics. Since many users can be using the system simultaneously, learning can be fast and capable of accommodating live updates of the underlying data, all of which are characteristics that a virtual personal assistant must have to be genuinely useful.
口语对话系统(SDS)包括建立有效的人机界面所需的技术,主要依赖于语音。到目前为止,它们主要部署在基于电话的呼叫中心应用程序中,如银行,账单查询和旅行信息,它们是使用手工制作的规则构建的。最近推出的Apple Siri和Google Now已经将基于语音的界面推向主流。这些虚拟个人助理(VPA)提供了彻底改变我们与机器交互方式的潜力,它们为正确控制和管理新兴的物联网开辟了道路--物联网是快速增长的智能设备网络,缺乏任何形式的传统用户界面。然而,当前的个人助理是使用与有限域口语对话系统相同的技术构建的。他们是不能够维持会话对话,除了在选定的有限的域,他们已经明确编程处理,最近的工作统计SDS已经表明,它不仅是可能的,这样一个系统,以适应和提高性能的域内,它已经被设计,但它也有可能为系统自动扩展其覆盖范围,包括新的,迄今未见的概念。这表明,应该有可能建立在有限领域统计SDS的发展取得的进展,设计一个全新的形式的口语对话系统(因此VPA),能够扩展和适应使用,以涵盖更广泛的会话主题。这样一个系统的设计是本次研究提案的重点,其关键思想是将最新的统计对话技术整合到一个覆盖面广的知识图谱中(例如freebase),它不仅包含关于实体的本体论信息,还包含可以应用于这些实体的操作(例如,查找航班信息、预订酒店房间、购买电子书等)。能够解释和响应每个可想到的用户请求的单个单片口语对话系统的实现是根本不可行的。因此,而不是简单地试图扩大现有SDS的覆盖范围,提出了一种新的分布式系统架构,具有三个关键特征:1。SDS的三个基本组件(语义解码器、对话管理器和响应生成器)分布在知识图上。本质上,图中的每个节点都有能力识别何时被引用,并有能力做出适当的响应。当用户说话时,所有的语义解码器都在听,基于解码器输出的激活级别,主题跟踪器识别哪个概念是焦点,并激活其对话策略。所有组件都是统计的,使得它们能够使用无监督的自适应来自动地在线自适应。通过确保类层次结构中的顶层节点具有经过良好训练的组件来管理数据稀疏性。最初,较低级别的更专业的概念只是从它们的超类继承所需的统计模型。当系统与用户交互并收集更多数据时,较低级别的组件会获得足够的数据来训练自己的专用统计模型。最终结果是系统不断在线学习。它一开始采用有限且生硬的对话风格,但使用得越多,它就变得越流畅,随着用户探索新主题,系统学会适应和扩展其处理这些新主题的能力。由于许多用户可以同时使用该系统,因此学习速度可以很快,并且能够适应底层数据的实时更新,所有这些都是虚拟个人助理必须具有的真正有用的特征。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Feudal Reinforcement Learning for Dialogue Management in Large Domains
- DOI:10.18653/v1/n18-2112
- 发表时间:2018-03
- 期刊:
- 影响因子:0
- 作者:I. Casanueva;Paweł Budzianowski;Pei-hao Su;Stefan Ultes;L. Rojas-Barahona;Bo-Hsiang Tseng;M. Gašić
- 通讯作者:I. Casanueva;Paweł Budzianowski;Pei-hao Su;Stefan Ultes;L. Rojas-Barahona;Bo-Hsiang Tseng;M. Gašić
Feudal Dialogue Management with Jointly Learned Feature Extractors
- DOI:10.18653/v1/w18-5038
- 发表时间:2018-07
- 期刊:
- 影响因子:0
- 作者:I. Casanueva;Paweł Budzianowski;Stefan Ultes;Florian Kreyssig;Bo-Hsiang Tseng;Yen-Chen Wu;Milica Gasic
- 通讯作者:I. Casanueva;Paweł Budzianowski;Stefan Ultes;Florian Kreyssig;Bo-Hsiang Tseng;Yen-Chen Wu;Milica Gasic
Distributed dialogue policies for multi-domain statistical dialogue management
多领域统计对话管理的分布式对话策略
- DOI:10.1109/icassp.2015.7178997
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Gasic M
- 通讯作者:Gasic M
Exploiting Sentence and Context Representations in Deep Neural Models for Spoken Language Understanding
利用深度神经模型中的句子和上下文表示进行口语理解
- DOI:10.48550/arxiv.1610.04120
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Barahona L
- 通讯作者:Barahona L
Challenges and Open Problems in Signal Processing: Panel Discussion Summary from ICASSP 2017 [Panel and Forum]
- DOI:10.1109/msp.2017.2743842
- 发表时间:2017-11
- 期刊:
- 影响因子:14.9
- 作者:Yonina C. Eldar;A. Hero;Li Deng;J. Fessler;J. Kovacevic;H. Poor;S. Young
- 通讯作者:Yonina C. Eldar;A. Hero;Li Deng;J. Fessler;J. Kovacevic;H. Poor;S. Young
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Young其他文献
Generalising sequence models for epigenome predictions with tissue and assay embeddings
通过组织和分析嵌入来概括表观基因组预测的序列模型
- DOI:
10.48550/arxiv.2308.11671 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
J. Deasy;R. Schwessinger;Ferran Gonzalez;Stephen Young;K. Branson - 通讯作者:
K. Branson
Leadership Development in the Flow of Work: Leveraging Technology to Accelerate Learning
工作流程中的领导力发展:利用技术加速学习
- DOI:
10.35613/ccl.2022.2047 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Stephen Young;Jessica Díaz;Bert De Coutere;H. Downs - 通讯作者:
H. Downs
Viewpoint: what do researchers know about the global business environment?
观点:研究人员对全球商业环境了解多少?
- DOI:
10.1108/02651330110389963 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Stephen Young - 通讯作者:
Stephen Young
Colorimetric Assay Procedure for Dissolution Studies of Meprobamate Formulations
- DOI:
10.1002/jps.2600601217 - 发表时间:
1971-12-01 - 期刊:
- 影响因子:
- 作者:
John W. Poole;George M. Irwin;Stephen Young - 通讯作者:
Stephen Young
Which is the preferred image modality for paediatricians when assessing photographs of bruises in children?
儿科医生在评估儿童瘀伤照片时首选哪种图像方式?
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Z. Lawson;D. Nuttall;Stephen Young;S. Evans;S. Maguire;F. Dunstan;A. Kemp - 通讯作者:
A. Kemp
Stephen Young的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Young', 18)}}的其他基金
Doctoral Dissertation Research: The Economic and Environmental Tradeoffs of Concrete Construction in Urban Settings
博士论文研究:城市环境中混凝土施工的经济与环境权衡
- 批准号:
2113938 - 财政年份:2021
- 资助金额:
$ 76.89万 - 项目类别:
Standard Grant
EAPSI:Multi-Level Belief-Driven Control for Real-Time Cooperative Search and Tracking
EAPSI:用于实时协作搜索和跟踪的多级置信驱动控制
- 批准号:
1015579 - 财政年份:2010
- 资助金额:
$ 76.89万 - 项目类别:
Fellowship Award
Spoken Dialogue Management using Partially Observable Markov Decision Processes
使用部分可观察马尔可夫决策过程的口语对话管理
- 批准号:
EP/F013930/1 - 财政年份:2007
- 资助金额:
$ 76.89万 - 项目类别:
Research Grant
Innovative Vehicle Scheduling and Routing Algorithms
创新的车辆调度和路线算法
- 批准号:
8361161 - 财政年份:1984
- 资助金额:
$ 76.89万 - 项目类别:
Standard Grant
相似国自然基金
拟连续domain范畴的若干问题研究
- 批准号:12301583
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
格值蕴涵算子与Domain理论中的若干问题
- 批准号:12331016
- 批准年份:2023
- 资助金额:193.00 万元
- 项目类别:重点项目
Domain理论中概率幂构造的若干问题研究
- 批准号:12371457
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
To空间上Domain理论中若干问题研究
- 批准号:12261040
- 批准年份:2022
- 资助金额:28 万元
- 项目类别:地区科学基金项目
面向Jung-Tix问题的Domain理论与量化序理论研究
- 批准号:12231007
- 批准年份:2022
- 资助金额:235 万元
- 项目类别:重点项目
C2 DOMAIN PROTEIN 1 (C2DP1)基因家族在植物开花调控中的功能研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
第四届Domain理论与拓扑学青年学者论坛
- 批准号:12242110
- 批准年份:2022
- 资助金额:5.00 万元
- 项目类别:专项项目
Domain理论中的收敛性与K-有界Sober空间范畴
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
广义Domain结构的表示理论研究
- 批准号:12171149
- 批准年份:2021
- 资助金额:51 万元
- 项目类别:面上项目
Non-Hausdorff拓扑和Domain理论中若干问题研究
- 批准号:
- 批准年份:2020
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
HMA domain proteins as conserved targets of pathogens that exploit plasmodesmata
HMA 结构域蛋白作为利用胞间连丝的病原体的保守靶标
- 批准号:
BB/X016056/1 - 财政年份:2024
- 资助金额:
$ 76.89万 - 项目类别:
Research Grant
Did light dictate ancient diversification of phylogeny and cell structure in the domain bacteria?
光是否决定了细菌领域的古代系统发育和细胞结构的多样化?
- 批准号:
24H00582 - 财政年份:2024
- 资助金额:
$ 76.89万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
- 批准号:
2411152 - 财政年份:2024
- 资助金额:
$ 76.89万 - 项目类别:
Standard Grant
EAGER: Algorithms for Analyzing Faulty Data Using Domain Information
EAGER:使用域信息分析错误数据的算法
- 批准号:
2414736 - 财政年份:2024
- 资助金额:
$ 76.89万 - 项目类别:
Standard Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
- 批准号:
BB/Y000455/1 - 财政年份:2024
- 资助金额:
$ 76.89万 - 项目类别:
Research Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
- 批准号:
BB/Y001117/1 - 财政年份:2024
- 资助金额:
$ 76.89万 - 项目类别:
Research Grant
Multi-dimensional quantum-enabled sub-THz Space-Borne ISAR sensing for space domain awareness and critical infrastructure monitoring - SBISAR
用于空间域感知和关键基础设施监测的多维量子亚太赫兹星载 ISAR 传感 - SBISAR
- 批准号:
EP/Y022092/1 - 财政年份:2024
- 资助金额:
$ 76.89万 - 项目类别:
Research Grant
CRII: SHF: Systematic Construction of Teaching Language Progressions for Embedded Domain-Specific Languages
CRII:SHF:嵌入式领域特定语言教学语言进程的系统构建
- 批准号:
2348408 - 财政年份:2024
- 资助金额:
$ 76.89万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
- 批准号:
2411153 - 财政年份:2024
- 资助金额:
$ 76.89万 - 项目类别:
Standard Grant
CAREER: Continual Learning with Evolving Memory, Soft Supervision, and Cross-Domain Knowledge - Foundational Theory and Advanced Algorithms
职业:利用进化记忆、软监督和跨领域知识进行持续学习——基础理论和高级算法
- 批准号:
2338506 - 财政年份:2024
- 资助金额:
$ 76.89万 - 项目类别:
Continuing Grant