Photonic Quantum-Enhanced Sensors

光子量子增强传感器

基本信息

  • 批准号:
    EP/M024385/1
  • 负责人:
  • 金额:
    $ 150.87万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Sensors permeate our society, measurement underpins quantitative action and standardized accurate measurements are a foundation of all commerce. The ability to measure parameters and sense phenomena with increasing precision has always led to dramatic advances in science and in technology - for example X-ray imaging, magnetic resonance imaging (MRI), interferometry and the scanning-tunneling microscope. Our rapidly growing understanding of how to engineer and control quantum systems vastly expands the limits of measurement and of sensing, opening up opportunities in radically alternative methods to the current state of the art in sensing. Through the developments proposed in this Fellowship, I aim to deliver sensors enhanced by the harnessing of unique quantum mechanical phenomena and principles inspired by insights into quantum physics to develop a series of prototypes with end-users. I plan to provide alternative approaches to the state of the art, to potentially reduce overall cost and dramatically increase capability, to reach new limits of precision measurement and to develop this technology for commercialization.Light is an excellent probe for sensing and measurement. Unique wavelength dependent absorption, and reemission of photons by atoms enable the properties of matter to be measured and the identification of constituent components. Interferometers provide ultra-sensitive measurement of optical path length changes on the nanometer-scale, translating to physical changes in distance, material expansion or sample density for example. However, for any canonical optical sensor, quantum mechanics predicts a fundamental limit of how much noise in such experiment can be suppressed - this is the so-called shot noise and is routinely observed as a noise floor when using a laser, the canonical "clean" source of radiation. By harnessing the quantum properties of light, it is possible reach precision beyond shot noise, enabling a new paradigm of precision sensors to be realized. Such quantum-enhanced sensors can use less light in the optical probe to gain the same level of precision in a conventional optical sensor. This enables, for example: the reduction of detrimental absorption in biological samples that can alter sample properties or damage it; the resolution of weak signals in trace gas detection; reduction of photon pressure in interferometry that can alter the measurement outcome; increase in precision when a limit of optical laser input is reached. Quantum-enhanced techniques are being used by the Laser Interferometer Gravitational Wave Observatory (LIGO) scientific collaboration to reach sub-shot noise precision interferometry of gravitational wave detection in kilometer-scale Michelson interferometers (GEO600). However, there is otherwise a distinct lack of practical devices that prove the potential of quantum-enhanced sensing as a disruptive technology for healthcare, precision manufacture, national security and commerce.For quantum-enhanced sensors to become small-scale, portable and therefore practical for an increased range of applications outside of the specialized quantum optics laboratory, it is clear that there is an urgent need to engineer an integrated optics platform, tailored to the needs of quantum-enhanced sensing. Requirements include robustness, miniaturization inherent phase stability and greater efficiency. Lithographic fabrication of much of the platform offers repeatable and affordable manufacture. My Fellowship proposal aims to bring together revolutionary quantum-enhanced sensing capabilities and photonic chip scale architectures. This will enable capabilities beyond the limits of classical physics for: absorbance spectroscopy, lab-on-chip interferometry and process tomography (revealing an unknown quantum process with fewer measurements and fewer probe photons).
传感器渗透到我们的社会中,测量是定量行动的基础,标准化的精确测量是所有商业的基础。以越来越高的精度测量参数和感测现象的能力总是导致科学和技术的巨大进步-例如X射线成像、磁共振成像(MRI)、干涉测量和扫描隧道显微镜。我们对如何设计和控制量子系统的理解迅速增长,极大地扩展了测量和传感的极限,为当前传感技术的根本替代方法提供了机会。通过本奖学金中提出的发展,我的目标是提供通过利用独特的量子力学现象和原理增强的传感器,这些现象和原理受到量子物理学见解的启发,与最终用户一起开发一系列原型。我计划为现有技术提供替代方法,以潜在地降低总体成本并显著提高能力,达到精确测量的新极限,并将该技术开发用于商业化。光是传感和测量的优秀探针。独特的波长依赖性吸收和原子的光子再发射使得物质的性质能够被测量和组成成分的识别。干涉仪提供纳米级光程长度变化的超灵敏测量,例如转换为距离、材料膨胀或样品密度的物理变化。然而,对于任何规范的光学传感器,量子力学预测了这种实验中可以抑制多少噪声的基本限制-这就是所谓的散粒噪声,并且在使用激光时通常被观察到作为噪声基底,典型的“干净”辐射源。通过利用光的量子特性,可以达到超越散粒噪声的精度,从而实现精密传感器的新范式。这种量子增强传感器可以在光学探针中使用更少的光,以获得与传统光学传感器相同的精度水平。这使得,例如:生物样品中有害吸收的减少,有害吸收会改变样品特性或损坏样品;痕量气体检测中弱信号的分辨率;干涉测量中光子压力的减少,光子压力会改变测量结果;当达到光学激光输入的极限时,精度提高。激光干涉仪引力波天文台(LIGO)科学合作正在使用量子增强技术,以实现在更大规模的迈克尔逊干涉仪(GEO 600)中进行引力波探测的亚散粒噪声精密干涉测量。然而,在其他方面,明显缺乏实际设备来证明量子增强传感作为医疗保健、精密制造、国家安全和医疗保健的颠覆性技术的潜力。为了使量子增强传感器变得小规模、便携式,从而在专业量子光学实验室之外的更大范围的应用中实用,显然,迫切需要设计一种适合于量子增强感测的需要的集成光学平台。要求包括鲁棒性、小型化、固有相位稳定性和更高的效率。大部分平台的光刻制造提供了可重复和负担得起的制造。我的奖学金提案旨在将革命性的量子增强传感能力和光子芯片规模架构结合在一起。这将实现超越经典物理学极限的能力:吸收光谱学,芯片实验室干涉测量和过程层析成像(用更少的测量和更少的探测光子揭示未知的量子过程)。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Maximising Precision in Saturation-Limited Absorption Measurements
最大限度地提高饱和限制吸收测量的精度
  • DOI:
    10.48550/arxiv.2107.07888
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Biele J
  • 通讯作者:
    Biele J
Maximizing precision in saturation-limited absorption measurements
  • DOI:
    10.1103/physreva.104.053717
  • 发表时间:
    2021-11-22
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Biele, Jake;Wollmann, Sabine;Allen, Euan J.
  • 通讯作者:
    Allen, Euan J.
Quantum Enhanced Precision Estimation of Transmission with Bright Squeezed Light
  • DOI:
    10.1103/physrevapplied.16.044031
  • 发表时间:
    2021-10-19
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Atkinson, G. S.;Allen, E. J.;Matthews, J. C. F.
  • 通讯作者:
    Matthews, J. C. F.
Fisher Information with Continuous Variable Quantum Resources
具有连续可变量子资源的费希尔信息
  • DOI:
    10.1109/cleoe-eqec.2019.8872844
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Atkinson G
  • 通讯作者:
    Atkinson G
Quantum Sensing of Absorbance and the Beer-Lambert Law
吸光度的量子传感和比尔-朗伯定律
  • DOI:
    10.1364/cqo.2019.m5a.28
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Allen E
  • 通讯作者:
    Allen E
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Matthews其他文献

70 METABOLIC SYNDROME AS A USEFUL PREDICTOR OF COMPLICATIONS FOLLOWING GU ONCOLOGIC SURGERY
  • DOI:
    10.1016/j.juro.2013.02.1448
  • 发表时间:
    2013-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Will Kirby;Jed Ferguson;David Johnson;Jonathan Matthews;Matthew Nielsen;Raj Pruthi;Angela Smith;Eric Wallen;Michael Woods
  • 通讯作者:
    Michael Woods
Operative Times as a Predictor of Length of Stay after Nephrectomy
  • DOI:
    10.1016/j.jamcollsurg.2014.07.353
  • 发表时间:
    2014-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Maxim J. McKibben;Josip Vukina;Abram McBride;Jonathan Matthews;Mathew Raynor;Raj Pruthi;Eric Wallen;Michael E. Woods;Matthew Nielsen;Angela B. Smith
  • 通讯作者:
    Angela B. Smith
MP2-15 IDENTIFYING INCIDENCE AND RISK FACTORS FOR VTE AMONG CYSTECTOMY PATIENTS FOR BLADDER CANCER
  • DOI:
    10.1016/j.juro.2014.02.173
  • 发表时间:
    2014-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Josip Vukina;Abram McBride;Max McKibben;Jonathan Matthews;Raj Pruthi;Eric Wallen;Michael Woods;Matthew Nielsen;Angela Smith
  • 通讯作者:
    Angela Smith
Lessons from practice: assessing early progress and success in river rehabilitation
  • DOI:
    10.1007/s10750-010-0389-2
  • 发表时间:
    2010-09-03
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Jonathan Matthews;Bart Reeze;Christian K. Feld;A. Jan Hendriks
  • 通讯作者:
    A. Jan Hendriks
Differences in complications and associated risk factors in open versus laparoscopic partial nephrectomy
  • DOI:
    10.1016/j.jamcollsurg.2013.07.356
  • 发表时间:
    2013-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Will Kirby;David Johnson;Jed E. Ferguson;Jonathan Matthews;Angela Smith;Matthew E. Nielsen;Michael E. Woods;Raj S. Pruthi;Eric M. Wallen
  • 通讯作者:
    Eric M. Wallen

Jonathan Matthews的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Matthews', 18)}}的其他基金

Monolithic generation & detection of squeezed light in silicon nitride photonics (Mono-Squeeze)
单片一代
  • 批准号:
    EP/X016218/1
  • 财政年份:
    2024
  • 资助金额:
    $ 150.87万
  • 项目类别:
    Research Grant
Nano-scale imaging with Hong-Ou-Mandel Interferometry (Nano-HOM)
使用红欧曼德尔干涉仪 (Nano-HOM) 进行纳米级成像
  • 批准号:
    EP/R024170/1
  • 财政年份:
    2018
  • 资助金额:
    $ 150.87万
  • 项目类别:
    Research Grant
QUantum-Enhanced SpecTroscopic molecular detection - QUEST
量子增强光谱分子检测 - QUEST
  • 批准号:
    EP/R020302/1
  • 财政年份:
    2017
  • 资助金额:
    $ 150.87万
  • 项目类别:
    Research Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Enhanced Quantum Dot Sources and Optical Atomic Memories for Telecommunication InterConnectivity
用于电信互连的增强型量子点源和光学原子存储器
  • 批准号:
    EP/Z000548/1
  • 财政年份:
    2024
  • 资助金额:
    $ 150.87万
  • 项目类别:
    Research Grant
RII Track-4:NSF: In-vitro Cytotoxicity Assessment of Synthesized Quantum Dots for Enhanced Cell Imaging
RII Track-4:NSF:用于增强细胞成像的合成量子点的体外细胞毒性评估
  • 批准号:
    2327429
  • 财政年份:
    2024
  • 资助金额:
    $ 150.87万
  • 项目类别:
    Standard Grant
Memory-Enhanced Entanglement Distribution with Gallium ARsenide quantum Dots
砷化镓量子点的记忆增强纠缠分布
  • 批准号:
    EP/Z000556/1
  • 财政年份:
    2024
  • 资助金额:
    $ 150.87万
  • 项目类别:
    Research Grant
NSF Convergence Accelerator Track L: Portable Quantum-enhanced Sensing and Species Identification of Bioaerosols
NSF 融合加速器轨道 L:生物气溶胶的便携式量子增强传感和物种识别
  • 批准号:
    2344350
  • 财政年份:
    2024
  • 资助金额:
    $ 150.87万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
  • 批准号:
    2326746
  • 财政年份:
    2023
  • 资助金额:
    $ 150.87万
  • 项目类别:
    Standard Grant
ExpandQISE: Track 1: A Quantum Good Network Protocol (QGP) and Implementation for Security-Enhanced Network Authentication
ExpandQISE:轨道 1:量子良好网络协议 (QGP) 和安全增强型网络身份验证的实现
  • 批准号:
    2329053
  • 财政年份:
    2023
  • 资助金额:
    $ 150.87万
  • 项目类别:
    Standard Grant
Q-NAV: Quantum Enhanced Inertial Navigation Systems
Q-NAV:量子增强惯性导航系统
  • 批准号:
    10071739
  • 财政年份:
    2023
  • 资助金额:
    $ 150.87万
  • 项目类别:
    Small Business Research Initiative
Quantum-Enhanced 3D Optical Microscopy (Q3DOM)
量子增强 3D 光学显微镜 (Q3DOM)
  • 批准号:
    BB/X004317/1
  • 财政年份:
    2023
  • 资助金额:
    $ 150.87万
  • 项目类别:
    Research Grant
Resonator-enhanced quantum levitation of macroscopic systems
宏观系统的谐振器增强量子悬浮
  • 批准号:
    DP230101940
  • 财政年份:
    2023
  • 资助金额:
    $ 150.87万
  • 项目类别:
    Discovery Projects
QuSeC-TAQS: Noise Engineering For Enhanced Quantum Sensing
QuSeC-TAQS:增强量子传感的噪声工程
  • 批准号:
    2326837
  • 财政年份:
    2023
  • 资助金额:
    $ 150.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了