Environment-aware Listener-Optimized Binaural Enhancement of Speech (E-LOBES)
环境感知听者优化双耳语音增强 (E-LOBES)
基本信息
- 批准号:EP/M026698/1
- 负责人:
- 金额:$ 125.33万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Age-related hearing loss affects over half the UK population aged over 60. Hearing loss makes communication difficult and so has severe negative consequences for quality of life. The most common treatment for mild-to-moderate hearing loss is the use of hearing aids. However even with aids, hearing impaired listeners are worse at understanding speech in noisy environments because their auditory system is less good at separating wanted speech from unwanted noise. One solution for this is to use speech enhancement algorithms to amplify the desired speech signals selectively while attenuating the unwanted background noise.It is well known that normal hearing listeners can better understand speech in noise when listening with two ears rather than with only one. Differences between the signals at the two ears allow the speech and noise to be separated based on their spatial locations resulting in improved intelligibility. Technological advances now make feasible the use of two hearing aids that are able to share information via a wireless link. By sharing information in this way, it becomes possible for the speech enhancement algorithms within the hearing aids to localize sound sources more accurately and, by jointly processing the signals for both ears, to ensure that the spatial cues that are present in the acoustic signals are retained. It is the goal of this project to exploit these binaural advantages by developing speech enhancement algorithms that jointly enhance the speech received by the two ears.Most current speech enhancement techniques have evolved from the telecommunications industry and are designed to act only on monaural signals. Many of the techniques can improve the perceived quality of already intelligible speech but binary masking is one of the few techniques that has been shown to improve the intelligibility of noisy speech for both normal and hearing impaired listeners. In the binary masking approach regions of the time-frequency domain that contain significant speech energy are left unchanged while regions that contain little speech energy are muted. In this project we will extend existing monaural binary masking techniques to provide binaural speech enhancement while preserving the inter-aural time and level differences that are critical for the spatial separation of sound sources.To train and tune our binaural speech enhancement algorithm we will also develop within the project an intelligibility metric that is able to predict the intelligibility of a speech signal for a binaural listener with normal or impaired hearing in the presence of competing noise sources. This metric is the key to finding automatically the optimum settings an individual listener's hearing aids in a particular environment.The final evaluation and development of the binaural enhancement algorithm assess speech perception in noise in a panel of hearing-impaired listeners who will also be asked to assess the quality of the enhanced speech signals.
与听力损失相关的听力损失影响超过一半的60岁以上的英国人口。听力损失使沟通变得困难,因此对生活质量产生严重的负面影响。助听器的选配是助听器选配的基础。然而,即使有助听器,听力受损的听众在嘈杂的环境中理解语音的能力也很差,因为他们的听觉系统不太善于将想要的语音与不想要的噪音分开。一种解决方案是使用语音增强算法来选择性地放大所需的语音信号,同时衰减不需要的背景噪声。在两个耳朵处的信号之间的差异允许语音和噪声基于它们的空间位置被分离,从而导致提高的可懂度。技术进步现在使得使用两个助听器成为可能,这两个助听器能够通过无线链路共享信息。通过以这种方式共享信息,助听器内的语音增强算法可以更准确地定位声源,并且通过联合处理双耳的信号,确保保留声学信号中存在的空间线索。本项目的目标是通过开发语音增强算法来利用这些双耳优势,该算法联合增强双耳接收到的语音。目前大多数语音增强技术都是从电信行业发展而来的,并且被设计为仅作用于单声道信号。许多技术可以提高已经可理解的语音的感知质量,但二进制掩蔽是已被证明可以提高正常和听力受损的听众的嘈杂语音的可理解性的少数技术之一。在二进制掩蔽方法中,包含显著语音能量的时频域区域保持不变,而包含很少语音能量的区域被静音。在这个项目中,我们将扩展现有的单声道二进制掩蔽技术,以提供双耳语音增强,同时保留间,为了训练和调整我们的双耳语音增强算法,我们还将在项目中开发一个可懂度度量,该度量能够预测双耳收听者的语音信号的可懂度,在竞争性噪声源存在时听力受损。这个指标是自动找到最佳设置的关键个别听众的助听器在一个特定的environment.The双耳增强算法的最终评估和发展评估语音感知噪声中的一个小组的听力受损的听众谁也将被要求评估增强语音信号的质量。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Active speech level estimation in noisy signals with quadrature noise suppression
具有正交噪声抑制的噪声信号中的主动语音电平估计
- DOI:10.1109/eusipco.2016.7760437
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Dionelis N
- 通讯作者:Dionelis N
Localization Experiments with Reporting by Head Orientation: Statistical Framework and Case Study
按头部方向进行报告的本地化实验:统计框架和案例研究
- DOI:10.17743/jaes.2017.0038
- 发表时间:2017
- 期刊:
- 影响因子:1.4
- 作者:De Sena E
- 通讯作者:De Sena E
Robust Source Counting and Acoustic DOA Estimation using Density-Based Clustering
使用基于密度的聚类进行稳健的源计数和声学 DOA 估计
- DOI:10.1109/sam.2018.8448889
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Hafezi S
- 通讯作者:Hafezi S
Single-Channel Online Enhancement of Speech Corrupted by Reverberation and Noise
- DOI:10.1109/taslp.2016.2641904
- 发表时间:2017-03
- 期刊:
- 影响因子:0
- 作者:Clement S. J. Doire;M. Brookes;P. Naylor;Christopher M. Hicks;Dave Betts;M. Dmour;S. H. Jensen
- 通讯作者:Clement S. J. Doire;M. Brookes;P. Naylor;Christopher M. Hicks;Dave Betts;M. Dmour;S. H. Jensen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Brookes其他文献
Fire alarm or false alarm?!: Situation awareness and decision‐making “bias” of firefighters in training exercises
火警还是误报?!:消防员训练演练中的态势感知和决策“偏差”
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
D. Catherwood;G. Edgar;Geoffrey Sallis;A. Medley;David Brookes - 通讯作者:
David Brookes
Epling, Samantha, Edgar, Graham K ORCID: 0000-0003-4302-7169, Russell, Paul and Helton, William (2018) How does physical demand affect cognitive performance? Interference between outdoor running and narrative memory. Proceedings of the Human Factors and Ergonomics
Epling, Samantha, Edgar, Graham K ORCID: 0000-0003-4302-7169, Russell, Paul 和 Helton, William (2018) 身体需求如何影响认知表现?
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Samantha L. Epling;Megan J. Blakely;G. Edgar;P. Russell;W. Helton;David Brookes;Steven Baker - 通讯作者:
Steven Baker
Situation awareness and habitual or resting bias in high-pressure fire-incident training command decisions
高压火灾事故训练指挥决策中的态势感知和习惯性或休息性偏见
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:3.1
- 作者:
Geoffrey Sallis;D. Catherwood;G. Edgar;Steven Baker;David Brookes - 通讯作者:
David Brookes
The human brain in fireground decision-making: trustworthy firefighting equipment?
火灾决策中的人脑:值得信赖的消防设备?
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Geoffrey Sallis;D. Catherwood;G. Edgar;A. Medley;David Brookes - 通讯作者:
David Brookes
David Brookes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Brookes', 18)}}的其他基金
Learning physics by practicing it with physical apparatus or using interactive video: is there a difference?
通过使用物理设备练习或使用交互式视频来学习物理:有区别吗?
- 批准号:
1726249 - 财政年份:2017
- 资助金额:
$ 125.33万 - 项目类别:
Standard Grant
相似国自然基金
动态无线传感器网络弹性化容错组网技术与传输机制研究
- 批准号:61001096
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于计算和存储感知的运动估计算法与结构研究
- 批准号:60803013
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Traversing the Gray Zone with Scale-aware Turbulence Closures
通过尺度感知的湍流闭合穿越灰色区域
- 批准号:
2337399 - 财政年份:2024
- 资助金额:
$ 125.33万 - 项目类别:
Standard Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
$ 125.33万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 125.33万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 125.33万 - 项目类别:
Standard Grant
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
- 批准号:
2340089 - 财政年份:2024
- 资助金额:
$ 125.33万 - 项目类别:
Standard Grant
Situation-aware Multi-sided Personalised Analytics in Spatial Crowdsourcing
空间众包中的态势感知多边个性化分析
- 批准号:
DP240100356 - 财政年份:2024
- 资助金额:
$ 125.33万 - 项目类别:
Discovery Projects
CBET-EPSRC: TECAN - Telemetry-Enabled Carbon Aware Networking
CBET-EPSRC:TECAN - 支持遥测的碳感知网络
- 批准号:
EP/X040828/1 - 财政年份:2024
- 资助金额:
$ 125.33万 - 项目类别:
Research Grant
A Knowledge-aware Multi-tasks-based Disease Network Construction on Biomedical Literature
基于生物医学文献的知识感知多任务疾病网络构建
- 批准号:
24K15097 - 财政年份:2024
- 资助金额:
$ 125.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 125.33万 - 项目类别:
Studentship
CAREER: Psychology-aware Human-in-the-Loop Cyber-Physical-System (HCPS): Methodologies, Algorithms, and Deployment
职业:具有心理学意识的人在环网络物理系统 (HCPS):方法、算法和部署
- 批准号:
2339266 - 财政年份:2024
- 资助金额:
$ 125.33万 - 项目类别:
Continuing Grant