Advances Polymer material for Energy Security - POLYMAT

推进能源安全聚合物材料 - POLYMAT

基本信息

  • 批准号:
    EP/N002288/1
  • 负责人:
  • 金额:
    $ 44.18万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Two of the most critical global challenges currently being faced are energy security and climate change. In the UK, more than £100 bn of investment in new UK power stations and grid infrastructure is projected within the next decade, both to replace ageing plant and to allow for the incorporation of renewable sources. Such changes will involve a paradigm shift in the ways in which we generate and transmit electricity. Since a central element of all items of power plant is electrical insulation, meeting our future challenges through the deployment of new innovative plant, this will require the development and exploitation of new high performance insulation material systems. Polymer nanocomposites have demonstrated clear potential, but the lack of detailed understanding of the underlying physics and chemistry is a major impediment to the technological realisation of this potential. In certain laboratory studies, nanodielectrics materials have out-performed unfilled and traditional micro-composite insulating materials. However, entirely contrary results have also been elsewhere. Undoubtedly, this variability in macroscopic behaviour comes about as a consequence of our inability to define and control the key factors that dictate the dielectric behaviour of nanocomposites. The overarching aim of this project is to resolve this issue such that the potential of dielectric nanocomposites - nanodielectrics - can be fully exploited. As such, the project is totally aligned with the EPSRC Materials for Energy theme in which it is accepted that "in the field of advanced materials it will be necessary to strengthen approaches to the rational design and characterisation of advanced materials and their integration into structures and systems". It also aligns with the Advanced Materials theme of the "Eight Great Technologies", it which it is accepted that "these materials are essential to 21st century manufacturing in a UK market worth £170 billion per annum and representing 15 per cent of GDP".Our research hypothesis is that the macroscopic properties of nanodielectrics cannot be reliably controlled without understanding the processes that occur at the interfaces between the matrix material and the nanoparticles, because these regions directly affect two critical issues. First, interfacial interactions will affect the nanoparticle dispersion, which has a major bearing on many physical properties and, second, the nature of the interface determines the local density of states in the system, and thereby the material's overall electrical characteristics. To understand such local processes is challenging and we propose to do this through a combination of computation simulation and experiment, where both aspects are closely aligned, thereby allowing the simulation to direct experiment and the experimental result to refine the simulation. The work programme has been divided in 3 distinct themes, which will progressively move the work from fundamentals to exploitation. Theme 1 will therefore concentrate on model systems, where simulation and experiment can be most closely aligned. Theme 2 will then seek to deploy the key messages to the development of technologically relevant systems and processes. Throughout, Theme 3 will engage with a range of stakeholders that will range from key industry players (equipment manufacturer s, energy utilities, standards bodies) to the general public t maximise the reach and significance of its ultimate impact (economic, environmental, societal). We see the involvement of our Industrial Users Group as being particularly important, both in helping to guide the project and in terms of ensuring acceptance of the technologies that will ultimately arise.
目前面临的两个最关键的全球挑战是能源安全和气候变化。在英国,预计在未来十年内,将有超过1000亿英镑的投资用于新建发电站和电网基础设施,以取代老化的发电厂,并允许纳入可再生能源。这些变化将涉及我们发电和输电方式的范式转变。由于发电厂所有项目的中心元素都是电气绝缘,因此通过部署新的创新电厂来应对我们未来的挑战,这将需要开发和利用新的高性能绝缘材料系统。聚合物纳米复合材料已经显示出明显的潜力,但缺乏对其潜在物理和化学的详细了解是技术实现这一潜力的主要障碍。在某些实验室研究中,纳米介电材料的性能已经超过了非填充和传统的微复合绝缘材料。然而,在其他地方也出现了完全相反的结果。毫无疑问,这种宏观行为的可变性是由于我们无法定义和控制决定纳米复合材料介电行为的关键因素。该项目的首要目标是解决这一问题,从而充分利用介电纳米复合材料的潜力。因此,该项目完全符合EPSRC的能源材料主题,即“在先进材料领域,有必要加强先进材料的合理设计和表征方法,并将其整合到结构和系统中”。它也符合“八大技术”的先进材料主题,它被公认为“这些材料对21世纪英国市场的制造业至关重要,每年价值1700亿英镑,占GDP的15%”。我们的研究假设是,如果不了解在基体材料和纳米颗粒之间的界面上发生的过程,纳米介电材料的宏观特性就不能可靠地控制,因为这些区域直接影响两个关键问题。首先,界面的相互作用会影响纳米粒子的分散,这对许多物理性质都有重要影响;其次,界面的性质决定了系统中局部状态的密度,从而决定了材料的整体电特性。要了解这样的局部过程是具有挑战性的,我们建议通过计算模拟和实验的结合来做到这一点,其中两个方面紧密结合,从而使模拟指导实验,实验结果完善模拟。工作方案分为三个不同的主题,这些主题将逐步使工作从基础转向开发。因此,主题1将集中于模型系统,其中模拟和实验可以最紧密地结合在一起。然后,主题2将设法将关键信息部署到与技术有关的系统和程序的发展中。主题3将与一系列利益相关者进行互动,从主要行业参与者(设备制造商、能源公用事业公司、标准机构)到公众,以最大限度地扩大其最终影响(经济、环境、社会)的范围和意义。我们认为我们的工业用户组的参与是特别重要的,无论是在帮助指导项目方面,还是在确保最终出现的技术被接受方面。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Excess electron states in fluid methane: Density-functional versus Lanczos approaches
液态甲烷中的过剩电子态:密度泛函方法与 Lanczos 方法
  • DOI:
    10.1016/j.cplett.2016.10.033
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Saiz F
  • 通讯作者:
    Saiz F
The excess electron in polymer nanocomposites
Electrical conductivity of waxes as model systems for polyethylene: Role of water
作为聚乙烯模型系统的蜡的电导率:水的作用
Electrical conductivity and moisture uptake studies of low density polyethylene octylnanosilica composite
低密度聚乙烯辛基二氧化硅复合材料的电导率和吸湿性研究
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Virtanen S.
  • 通讯作者:
    Virtanen S.
Predicting Nanoparticle Uptake by Biological Membranes: Theory and Simulation
预测生物膜对纳米粒子的吸收:理论与模拟
  • DOI:
    10.26434/chemrxiv.12905768.v1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Schneemilch M
  • 通讯作者:
    Schneemilch M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nick Quirke其他文献

Analysis of gas adsorption in Kureha active carbon based on the slit–pore model and Monte-Carlo simulations
基于狭缝孔隙模型和蒙特卡罗模拟的吴羽活性炭气体吸附分析
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Sweatman;Nick Quirke;Weidong Zhu;R. Kapteijn
  • 通讯作者:
    R. Kapteijn
Modelling gas mixture adsorption in active carbons
模拟活性炭中的气体混合物吸附
  • DOI:
    10.1080/08927020500108296
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    M. Sweatman;Nick Quirke
  • 通讯作者:
    Nick Quirke

Nick Quirke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nick Quirke', 18)}}的其他基金

Experimental Nanofluidics: device architectures based on carbon nanopipes (revised)
实验纳米流体:基于碳纳米管的设备架构(修订版)
  • 批准号:
    EP/E049702/1
  • 财政年份:
    2007
  • 资助金额:
    $ 44.18万
  • 项目类别:
    Research Grant

相似国自然基金

大面积polymer-NP-MOFs复合薄膜的构筑及光催化选择性加氢研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CNT网络/Polymer复合材料力学性能的多尺度数值模拟研究
  • 批准号:
    11602270
  • 批准年份:
    2016
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
高阻隔主动包装SiOx/Polymer复合薄膜的磁控共溅射制备及反应路径研究
  • 批准号:
    51302054
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于金纳米颗粒/Polymer复合结构的MEMS嵌入式高灵敏度力敏检测元件基础研究
  • 批准号:
    51105345
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAS-MNP: Degradation of Plastics in the Environment: Decoupling the Roles of Polymer Type, Material Attributes, and Chemical Additives
CAS-MNP:环境中塑料的降解:解耦聚合物类型、材料属性和化学添加剂的作用
  • 批准号:
    2304991
  • 财政年份:
    2023
  • 资助金额:
    $ 44.18万
  • 项目类别:
    Continuing Grant
Effect of Treatment of Water-Absorption-Controlling Material as Primer for Coating of Polymer Cement Mortar on Durability of Concrete
吸水控制材料作为聚合物水泥砂浆涂层底漆处理对混凝土耐久性的影响
  • 批准号:
    23K04127
  • 财政年份:
    2023
  • 资助金额:
    $ 44.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Slippery Nanoemulsion-Infused Polymer Coatings that Prevent Bacterial Fouling and Block Bacterial Virulence
光滑的纳米乳液注入聚合物涂层可防止细菌污染并阻止细菌毒力
  • 批准号:
    10667161
  • 财政年份:
    2023
  • 资助金额:
    $ 44.18万
  • 项目类别:
The development of novel pulp capping material utilizing colloidal platinum nanoparticles and polymer-based components
利用胶体铂纳米颗粒和聚合物成分开发新型盖髓材料
  • 批准号:
    23K16013
  • 财政年份:
    2023
  • 资助金额:
    $ 44.18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
BRITE Relaunch: Realizing the Benefits of Additive Manufacturing for the Microstructural Control of Polymer Material Systems
BRITE 重新启动:实现增材制造对聚合物材料系统微观结构控制的优势
  • 批准号:
    2227573
  • 财政年份:
    2023
  • 资助金额:
    $ 44.18万
  • 项目类别:
    Standard Grant
Establishment of a foundation for polymer material design by integrating data science and molecular simulation
整合数据科学和分子模拟,为高分子材料设计奠定基础
  • 批准号:
    22K11949
  • 财政年份:
    2022
  • 资助金额:
    $ 44.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Visible-light driven biodegradable polymer monomer synthesis from carbon dioxide as a raw material with by a hybrid catalyst system
以二氧化碳为原料,采用混合催化剂体系合成可见光驱动的可生物降解聚合物单体
  • 批准号:
    22H01872
  • 财政年份:
    2022
  • 资助金额:
    $ 44.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Thermal modeling of material deposition in melt extrusion 3D printing of fiber reinforced polymer composites
纤维增强聚合物复合材料熔融挤出 3D 打印中材料沉积的热建模
  • 批准号:
    576647-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 44.18万
  • 项目类别:
    Alliance Grants
Carbon-fiber reinforced polymer composite materials with shape memory ability: relationship between material structure and shape memory characteristics
具有形状记忆能力的碳纤维增强聚合物复合材料:材料结构与形状记忆特性的关系
  • 批准号:
    22K05227
  • 财政年份:
    2022
  • 资助金额:
    $ 44.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ERI: Bonding and Filler Dispersion in One-Step, in-situ Shear Exfoliated Two-Dimensional Material-Polymer Nanocomposites and Their Application as Desalination Membranes
ERI:一步原位剪切剥离二维材料-聚合物纳米复合材料中的粘合和填料分散及其作为海水淡化膜的应用
  • 批准号:
    2138574
  • 财政年份:
    2022
  • 资助金额:
    $ 44.18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了