Random Perturbations of Ultraparabolic Partial Differential Equations under rescaling
重标度下超抛物型偏微分方程的随机扰动
基本信息
- 批准号:EP/N003209/1
- 负责人:
- 金额:$ 12.73万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is in the area of nonlinear partial differential equations (PDEs). More precisely I am interesting in proving rigorous convergence for solutions of a randomly perturbed nonlinear PDE to the solution of an effective deterministic nonlinear PDE.I look at different problems (both first-order and second-order) for nonlinear PDEs, associated to suitable Hoermander vector fields. The geometry of Hoermander vector fields (Carnot-Caratheodory spaces) is degenerate in the sense that some directions for the motion are forbidden (non admissible). A family of vector fields is said to satisfy the Hoermander condition (with step=k) if the vectors of the family together with all their commutators up to some order k-1 generate at any point the whole tangent space. If the Hoermander condition is satisfied, then one can always go everywhere by following only paths in the directions of the vector fields (admissible paths).The natural scaling for PDE problems associated to these underlying geometries is anisotropic. For example, thinking of homogenisation of a standard uniformly elliptic/parabolic PDE, one usually takes the limit as epsilon (i.e. a small parameter) tends to zero of an equation depending for example on (x/epsilon,y/epsilon,z/epsilon), where (x,y,z) is a point in the 3-dimensional Euclidean space. This means that the equation is isotropically rescaled. On the other end, when considering a degenerate PDE related to Hoermander vector fields, the rescaling needs to adapt to the new geometric underlying structure, e.g. a point (x,y,z) may scale as (x/epsilon,y/epsilon, z/epsilon^2). The challenge in the study of these limit theorems is to find approaches which do not rely on the commutativity of the Euclidean structure or on the identification between manifold (points) and tangent space (velocities). Further complications come from the limited use of geodesic arguments due to the highly irregular nature of such curves.Thus the proposed project requires an intricate combination of ideas and techniques from analysis, probability and geometry.
这个建议是在非线性偏微分方程(PDEs)的领域。更确切地说,我感兴趣的是证明随机扰动非线性PDE的解对有效确定性非线性PDE的解的严格收敛性。我看不同的问题(一阶和二阶)非线性偏微分方程,相关的合适的Hoermander向量场。Hoermander向量场(Carnot-Caratheodory空间)的几何是简并的,即运动的某些方向是禁止的(不可接受的)。如果一组向量场的向量及其k-1阶以下的交换子在任意点生成整个切空间,则该向量场族满足Hoermander条件(步长=k)。如果满足Hoermander条件,则只要沿着向量场方向上的路径(可容许路径)就可以到达任何地方。与这些底层几何图形相关的偏微分方程问题的自然缩放是各向异性的。例如,考虑标准均匀椭圆/抛物PDE的均质化,人们通常将极限取为依赖于(x/epsilon,y/epsilon,z/epsilon)的方程的epsilon(即小参数)趋于零,其中(x,y,z)是三维欧几里得空间中的一个点。这意味着方程是各向同性重新标度的。另一方面,当考虑与Hoermander向量场相关的退化偏微分方程时,重新缩放需要适应新的几何底层结构,例如,点(x,y,z)可以缩放为(x/epsilon,y/epsilon, z/epsilon^2)。研究这些极限定理的挑战是找到不依赖于欧几里得结构的交换性或流形(点)和切空间(速度)之间的识别的方法。由于这种曲线的高度不规则性,对测地线论证的使用受到限制,这就更加复杂了。因此,拟议的项目需要从分析,概率和几何的思想和技术的复杂组合。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ergodic mean field games with Hörmander diffusions
具有 Hörmander 扩散的遍历平均场博弈
- DOI:10.1007/s00526-018-1391-1
- 发表时间:2018
- 期刊:
- 影响因子:2.1
- 作者:Dragoni F
- 通讯作者:Dragoni F
Generalised translations and periodicity in the geometry of vector fields with application to Grushin spaces
矢量场几何中的广义平移和周期性及其在 Grushin 空间中的应用
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Dragoni, F.
- 通讯作者:Dragoni, F.
Starshapedeness for fully non‐linear equations in Carnot groups
- DOI:10.1112/jlms.12198
- 发表时间:2018-04
- 期刊:
- 影响因子:0
- 作者:F. Dragoni;N. Garofalo;P. Salani
- 通讯作者:F. Dragoni;N. Garofalo;P. Salani
Starshaped and convex sets in Carnot groups and sub-Riemannian geometries
卡诺群和亚黎曼几何中的星形集和凸集
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Dragoni, F.
- 通讯作者:Dragoni, F.
Stochastic Homogenization for Functionals with Anisotropic Rescaling and Noncoercive Hamilton-Jacobi Equations
具有各向异性缩放和非强制哈密顿-雅可比方程的泛函随机齐次化
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:2
- 作者:N. Dirr;F. Dragoni;Paola Mannucci;Claudio Marchi
- 通讯作者:Claudio Marchi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Federica Dragoni其他文献
Limiting behavior of solutions of subelliptic heat equations
- DOI:
10.1007/s00030-007-6013-0 - 发表时间:
2008-01-26 - 期刊:
- 影响因子:1.200
- 作者:
Federica Dragoni - 通讯作者:
Federica Dragoni
Horizontal semiconcavity for the square of Carnot-Carath\'eodory distance on ideal Carnot groups and applications to Hamilton-Jacobi equations
理想卡诺群上卡诺-卡拉特气味距离平方的水平半凹性及其在 Hamilton-Jacobi 方程中的应用
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Federica Dragoni;Qing Liu;Ye Zhang - 通讯作者:
Ye Zhang
Federica Dragoni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Federica Dragoni', 18)}}的其他基金
Generalised and Low-Regularity Solutions of Nonlinear Partial Differential Equations
非线性偏微分方程的广义低正则解
- 批准号:
EP/V009060/1 - 财政年份:2021
- 资助金额:
$ 12.73万 - 项目类别:
Research Grant
相似海外基金
Understanding the Geospace Phenomena Connected to Localized Perturbations in Earth’s Magnetic Field
了解与地球磁场局部扰动相关的地球空间现象
- 批准号:
2331527 - 财政年份:2024
- 资助金额:
$ 12.73万 - 项目类别:
Standard Grant
The response of stellar discs to perturbations
恒星盘对扰动的响应
- 批准号:
2888230 - 财政年份:2023
- 资助金额:
$ 12.73万 - 项目类别:
Studentship
Vestibular and neck muscle contributions to head control in response to induced head perturbations and falls in balance-impaired older adults
前庭和颈部肌肉对头部控制的贡献,以应对平衡受损老年人的头部扰动和跌倒
- 批准号:
10789703 - 财政年份:2023
- 资助金额:
$ 12.73万 - 项目类别:
Pooled Optical Imaging, Neurite Tracing, and Morphometry Across Perturbations (POINT-MAP).
混合光学成像、神经突追踪和扰动形态测量 (POINT-MAP)。
- 批准号:
10741188 - 财政年份:2023
- 资助金额:
$ 12.73万 - 项目类别:
CRII: SaTC: Towards Understanding the Robustness of Graph Neural Networks against Graph Perturbations
CRII:SaTC:了解图神经网络对抗图扰动的鲁棒性
- 批准号:
2241713 - 财政年份:2023
- 资助金额:
$ 12.73万 - 项目类别:
Standard Grant
Physical-Space Estimates on Black Hole Perturbations
黑洞扰动的物理空间估计
- 批准号:
2306143 - 财政年份:2023
- 资助金额:
$ 12.73万 - 项目类别:
Standard Grant
NSF-ANR: Physics of chromosomes through mechanical perturbations
NSF-ANR:通过机械扰动研究染色体物理学
- 批准号:
2210558 - 财政年份:2023
- 资助金额:
$ 12.73万 - 项目类别:
Continuing Grant
Gene regulatory network modeling of disease-associated DNA methylation perturbations
疾病相关 DNA 甲基化扰动的基因调控网络建模
- 批准号:
10730859 - 财政年份:2023
- 资助金额:
$ 12.73万 - 项目类别:
A stochastic formalism for tensor perturbations: gravitational waves induced by non-linear effects
张量扰动的随机形式主义:非线性效应引起的引力波
- 批准号:
23KF0247 - 财政年份:2023
- 资助金额:
$ 12.73万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Motor learning of protective responses to balance perturbations in persons with Parkinson's Disease
帕金森病患者平衡扰动保护性反应的运动学习
- 批准号:
10574010 - 财政年份:2023
- 资助金额:
$ 12.73万 - 项目类别:














{{item.name}}会员




