A practical quantum simulator: simulating molecular vibrations with photons

实用的量子模拟器:用光子模拟分子振动

基本信息

  • 批准号:
    EP/N003470/1
  • 负责人:
  • 金额:
    $ 130.8万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Computer simulations of physical models have become a vital tool in science and engineering. For example, the aerodynamics and chassis integrity for a new car design will be fully simulated on a computerised model, long before production begins, while biologists will use a simplified computer model to simulate the dynamics involved in protein folding. In both of these cases, the physics underlying the model to be simulated is that of the familiar, classical world, as is the information that is processed. In contrast, chemists working with systems at the microscopic scale (quantum chemists) must incorporate quantum physics into their physical models. But these models come up against the intractability of simulating even modestly sized quantum systems on classical computers.The number of possible configurations of any system grows exponentially with its degrees of freedom, just like the number of heads/tails configurations of a row of coins doubles with each additional coin. Since a quantum system can exist simultaneously across all of its configurations, its evolution is too large to be simulated with a classical computer. Therefore, quantum mechanical models for classical computers are necessarily limited while more compete models are fundamentally intractable to classical simulation. Yet increasingly, scientists need to understand the role of quantum physics, for example in biological molecules.The famous physicist and Nobel Laureate, Richard Feynman, identified this problem in a seminal lecture in 1982. He also proposed a solution. Feynman suggested using one controllable quantum system to simulate the model for the quantum system one wishes to study. The ultimate realisation of this ingenious concept is a digital quantum simulator that theoretically can be programmed to simulate any quantum system. Building this device is the focus of an increasingly intensive international effort, or competition. This effort is likely to be long term since isolating, digitising, and coherently controlling large quantum systems has proved to be highly challenging, due to their inclination to couple to the environment, decohere, and behave classically. After all, the world we see around us is classical, not quantum. Therefore, the road to a quantum simulator that surpasses the capabilities of classical computers seems, long and difficult, and is an ultimate goal to scientists working in quantum information science.This fellowship proposes a smart route to large-scale quantum simulations that is intrinsically scalable, and can be implemented with manufacturable technologies. The project aims to simulate quantum physical models at a scale that surpasses the capabilities of conventional computers. This is possible because a mapping has been identified between an established model for the quantum vibrational behaviour of molecules, which cannot be simulated with a conventional computer, and the description of photons in manufacturable optical chips. By injecting ensembles of single photons into a versatile optical chip, the evolution of a large molecule can be tracked.The direction of the research is to then make improvements to the molecular mathematical model with a series of perturbations, which, in loose terms, are matched by perturbations to the optical circuits in the form of weak interactions between the photons. The difficulty in getting single photons to strongly interact is the main challenge for optical quantum computers. However, developing successive generations of devices that build up layers of weak interactions allows interesting and complex simulations to be performed on an increasingly tailored and accurate molecular model. As these devices progress, they will develop additional computational capabilities, such as the calculation of factors involved in chemical transitions and characteristic properties of biotic molecules.
物理模型的计算机模拟已经成为科学和工程中的重要工具。例如,在生产开始之前很久,新车设计的空气动力学和底盘完整性将在计算机模型上完全模拟,而生物学家将使用简化的计算机模型来模拟蛋白质折叠所涉及的动力学。在这两种情况下,被模拟的模型背后的物理是熟悉的经典世界,被处理的信息也是如此。相比之下,在微观尺度上研究系统的化学家(量子化学家)必须将量子物理学纳入他们的物理模型。但是,这些模型遇到了在经典计算机上模拟甚至是中等大小的量子系统的困难,任何系统的可能配置的数量都随着其自由度呈指数增长,就像一排硬币的正面/反面配置的数量随着每一个硬币的增加而增加一倍。由于一个量子系统可以同时存在于它的所有配置中,它的演化太大了,无法用经典计算机模拟。因此,经典计算机的量子力学模型必然是有限的,而更多的竞争模型是根本上难以经典模拟。然而,科学家们越来越需要了解量子物理学的作用,例如在生物分子中。著名物理学家和诺贝尔奖获得者理查德·费曼在1982年的一次开创性演讲中指出了这个问题。他还提出了一个解决方案。费曼建议使用一个可控的量子系统来模拟人们希望研究的量子系统的模型。这个巧妙概念的最终实现是一个数字量子模拟器,理论上可以编程来模拟任何量子系统。建造这种装置是日益密集的国际努力或竞争的焦点。这项工作可能是长期的,因为隔离,数字化和相干控制大型量子系统已被证明是极具挑战性的,因为它们倾向于耦合到环境,退相干和经典行为。毕竟,我们周围的世界是经典的,而不是量子的。因此,通往超越经典计算机能力的量子模拟器的道路似乎是漫长而艰难的,并且是量子信息科学工作的科学家的终极目标。该奖学金提出了一条通往大规模量子模拟的智能路线,该模拟器本质上是可扩展的,并且可以用可制造的技术实现。该项目旨在以超越传统计算机能力的规模模拟量子物理模型。这是可能的,因为已经确定了一个映射之间的建立模型的量子振动行为的分子,这不能用传统的计算机模拟,和光子的描述在可制造的光学芯片。通过将单个光子的集合体注入到多功能光学芯片中,可以跟踪大分子的演化。研究方向是通过一系列微扰来改进分子数学模型,这些微扰在松散的条件下与光子之间弱相互作用形式的光路微扰相匹配。使单光子强烈相互作用的困难是光量子计算机的主要挑战。然而,开发连续几代建立弱相互作用层的设备,可以在日益定制和准确的分子模型上进行有趣和复杂的模拟。随着这些设备的进步,它们将开发出额外的计算能力,例如计算化学转变和生物分子特征特性所涉及的因素。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum model learning agent: characterisation of quantum systems through machine learning
量子模型学习代理:通过机器学习表征量子系统
  • DOI:
    10.1088/1367-2630/ac68ff
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Flynn B
  • 通讯作者:
    Flynn B
Photonic quantum simulations of coupled $PT$-symmetric Hamiltonians
耦合 $PT$ 对称哈密顿量的光子量子模拟
  • DOI:
    10.48550/arxiv.2202.00358
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maraviglia N
  • 通讯作者:
    Maraviglia N
Protocol for generation of high-dimensional entanglement from an array of non-interacting photon emitters
  • DOI:
    10.1088/1367-2630/ac475d
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Thomas J. Bell;J. Bulmer;Alex E. Jones;S. Paesani;D. McCutcheon;A. Laing
  • 通讯作者:
    Thomas J. Bell;J. Bulmer;Alex E. Jones;S. Paesani;D. McCutcheon;A. Laing
Learning models of quantum systems from experiments
  • DOI:
    10.1038/s41567-021-01201-7
  • 发表时间:
    2021-04-29
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    Gentile, Antonio A.;Flynn, Brian;Laing, Anthony
  • 通讯作者:
    Laing, Anthony
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anthony Laing其他文献

Integrated photonic quantum technologies
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    35
  • 作者:
    Jianwei Wang;Fabio Sciarrino;Anthony Laing;Mark G. Thompson
  • 通讯作者:
    Mark G. Thompson
Testing foundations of quantum mechanics with photons
用光子测试量子力学的基础
  • DOI:
    10.1038/nphys2931
  • 发表时间:
    2014-04-01
  • 期刊:
  • 影响因子:
    18.400
  • 作者:
    Peter Shadbolt;Jonathan C. F. Mathews;Anthony Laing;Jeremy L. O'Brien
  • 通讯作者:
    Jeremy L. O'Brien
Quantum Model Learning Agent
量子模型学习代理
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brian Flynn;Antonio Andreas Gentile;R. Santagati;Nathan Wiebe;Anthony Laing
  • 通讯作者:
    Anthony Laing
Efficient Nonlinear Activation Function in Optical Neural Network
光神经网络中高效的非线性激活函数
  • DOI:
    10.1364/cleo_at.2020.jth2b.6
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hailiang Zhang;L. Wan;Mile Gu;Xudong Jiang;J. Thompson;Hong Cai;S. Paesani;R. Santagati;Anthony Laing;G. Lo;D. Kwong;L. Kwek;Ai Qun Liu
  • 通讯作者:
    Ai Qun Liu

Anthony Laing的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anthony Laing', 18)}}的其他基金

Simulating High Energy Physics with Quantum Photonics
用量子光子学模拟高能物理
  • 批准号:
    ST/W00660X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 130.8万
  • 项目类别:
    Research Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
高温气化过程中煤灰矿物质演变规律的量子化学计算与实验研究
  • 批准号:
    50906055
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
广义Besov函数类上的几个逼近特征
  • 批准号:
    10926056
  • 批准年份:
    2009
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
基于量子点多色荧光细胞标志谱型的CTC鉴别与肿瘤个体化诊治的研究
  • 批准号:
    30772507
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
驻波场驱动的量子相干效应的研究
  • 批准号:
    10774058
  • 批准年份:
    2007
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
量子计算电路的设计和综合
  • 批准号:
    60676020
  • 批准年份:
    2006
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目
半导体物理中的非线性偏微分方程组
  • 批准号:
    10541001
  • 批准年份:
    2005
  • 资助金额:
    4.0 万元
  • 项目类别:
    专项基金项目
量子点技术对细胞表面蛋白和受体在体内分布的研究
  • 批准号:
    30570686
  • 批准年份:
    2005
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER:Superconductivity, fractionalization and quantum criticality in multilayer quantum simulator
职业:多层量子模拟器中的超导、分级和量子临界性
  • 批准号:
    2237031
  • 财政年份:
    2023
  • 资助金额:
    $ 130.8万
  • 项目类别:
    Continuing Grant
Trefoil-Qulacs: A Multi-SATA FPGA Implementation for Quantum Computer Simulator Qulacs
Trefoil-Qulacs:量子计算机模拟器 Qulacs 的多 SATA FPGA 实现
  • 批准号:
    23K19979
  • 财政年份:
    2023
  • 资助金额:
    $ 130.8万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Building a programmable trapped ion quantum simulator
构建可编程俘获离子量子模拟器
  • 批准号:
    RGPIN-2018-05250
  • 财政年份:
    2022
  • 资助金额:
    $ 130.8万
  • 项目类别:
    Discovery Grants Program - Individual
Development of electron-phonon self-consistent simulator considering quantum effects
考虑量子效应的电子声子自洽模拟器的研制
  • 批准号:
    22K04230
  • 财政年份:
    2022
  • 资助金额:
    $ 130.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonequilibrium Dynamics and Site-Resolved Imaging in a Three-Dimensional Spinor Bose-Hubbard Model Quantum Simulator
三维旋量玻色-哈伯德模型量子模拟器中的非平衡动力学和位点分辨成像
  • 批准号:
    2207777
  • 财政年份:
    2022
  • 资助金额:
    $ 130.8万
  • 项目类别:
    Continuing Grant
Development of a hybrid quantum-classical reservoir simulator and evaluation of quantum computing hardware
混合量子经典储层模拟器的开发和量子计算硬件的评估
  • 批准号:
    561106-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 130.8万
  • 项目类别:
    Alliance Grants
Building a programmable trapped ion quantum simulator
构建可编程俘获离子量子模拟器
  • 批准号:
    RGPIN-2018-05250
  • 财政年份:
    2021
  • 资助金额:
    $ 130.8万
  • 项目类别:
    Discovery Grants Program - Individual
Non-Equilibrium Steady States and Dynamics in a Tapped-Ion Quantum Simulator with Engineered Dissipation
具有工程耗散的抽头离子量子模拟器中的非平衡稳态和动态
  • 批准号:
    2112893
  • 财政年份:
    2021
  • 资助金额:
    $ 130.8万
  • 项目类别:
    Continuing Grant
Rydberg Synthetic Dimensions: A New Simulator for Quantum Matter
里德伯合成维度:量子物质的新模拟器
  • 批准号:
    2110596
  • 财政年份:
    2021
  • 资助金额:
    $ 130.8万
  • 项目类别:
    Standard Grant
Investigation of quantum dynamics of wave packets with a continuous-variable optical quantum simulator
用连续变量光量子模拟器研究波包的量子动力学
  • 批准号:
    21K18593
  • 财政年份:
    2021
  • 资助金额:
    $ 130.8万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了