Randomized Algorithms for Extreme Convex Optimization

极端凸优化的随机算法

基本信息

  • 批准号:
    EP/N005538/1
  • 负责人:
  • 金额:
    $ 83.91万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

The field of mathematical optimization experienced a paradigm shift in the last decade: while the 20 years prior to about year 2005 were dominated by the development of interior-point methods, research activity since has almost entirely been focused on first-order methods. This was caused by several factors. Most notably, there has been a surge in the demand from practitioners, in fields such as machine learning, signal processing and data science, for new methods able to cope with new large scale problems. Moreover, an important role in the transition was played by the fact that accuracy requirements in many modern applications (such as classification and image denoising) were only moderate or low, which was in sharp contrast with the preceding focus on applications in classical domains such as engineering and physics where accuracy requirements were typically high. The paradigm shift would not have been possible, however, were it not for the development and success of modern gradient methods, the complexity of which improved upon classical results by an order of magnitude, using sophisticated tools such as the estimate sequence method and smoothing. At the moment, mathematical optimization is experiencing yet another revolution, related to the introduction of randomization as an algorithmic design and analysis tool, much in the same way that probabilistic reasoning has recently begun to transform several other "continuous" fields, including numerical linear algebra and control theory. The import of randomization is at least twofold: it makes it possible to design new algorithms which scale to extreme dimensions, and at the same time it often leads to improved theoretical complexity bounds. This project focuses on the design, complexity analysis and high-performing implementations of efficient randomized algorithms suitable for extreme convex optimization.
在过去的十年中,数学优化领域经历了一次范式转变:在2005年之前的20年中,主要是由邻域点方法的发展主导,此后的研究活动几乎完全集中在一阶方法上。这是由几个因素造成的。最值得注意的是,机器学习、信号处理和数据科学等领域的从业者对能够科普新的大规模问题的新方法的需求激增。此外,许多现代应用(如分类和图像去噪)的精度要求仅为中等或较低,这与之前对经典领域(如工程和物理)的应用的关注形成鲜明对比,这些领域的精度要求通常很高。然而,如果不是现代梯度方法的发展和成功,范式的转变是不可能的,现代梯度方法的复杂性比经典结果提高了一个数量级,使用复杂的工具,如估计序列方法和平滑。目前,数学优化正在经历另一场革命,与随机化作为算法设计和分析工具的引入有关,就像概率推理最近开始改变其他几个“连续”领域一样,包括数值线性代数和控制理论。随机化的重要性至少有两个方面:它使设计新的算法成为可能,这些算法可以扩展到极端的维度,同时它通常会导致改进的理论复杂性界限。该项目的重点是设计,复杂性分析和高性能的实现高效的随机算法适用于极端凸优化。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Linearly Convergent Randomized Iterative Methods for Computing the Pseudoinverse
计算伪逆的线性收敛随机迭代方法
  • DOI:
    10.48550/arxiv.1612.06255
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gower Robert M.
  • 通讯作者:
    Gower Robert M.
Stochastic Block BFGS: Squeezing More Curvature out of Data
  • DOI:
  • 发表时间:
    2016-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Gower;D. Goldfarb;Peter Richtárik
  • 通讯作者:
    R. Gower;D. Goldfarb;Peter Richtárik
Optimization in High Dimensions via Accelerated, Parallel, and Proximal Coordinate Descent
  • DOI:
    10.1137/16m1085905
  • 发表时间:
    2016-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Olivier Fercoq;Peter Richtárik
  • 通讯作者:
    Olivier Fercoq;Peter Richtárik
Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling
使用非均匀采样实现更快的加速坐标下降
  • DOI:
    10.48550/arxiv.1512.09103
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Allen-Zhu Zeyuan
  • 通讯作者:
    Allen-Zhu Zeyuan
Randomized Quasi-Newton Updates are Linearly Convergent Matrix Inversion Algorithms
随机拟牛顿更新是线性收敛矩阵求逆算法
  • DOI:
    10.48550/arxiv.1602.01768
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gower Robert M.
  • 通讯作者:
    Gower Robert M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Richtarik其他文献

Peter Richtarik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Richtarik', 18)}}的其他基金

Accelerated Coordinate Descent Methods for Big Data Problems
大数据问题的加速坐标下降法
  • 批准号:
    EP/K02325X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 83.91万
  • 项目类别:
    Research Grant

相似海外基金

Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
  • 批准号:
    2348306
  • 财政年份:
    2023
  • 资助金额:
    $ 83.91万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
  • 批准号:
    2217003
  • 财政年份:
    2022
  • 资助金额:
    $ 83.91万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
  • 批准号:
    2217032
  • 财政年份:
    2022
  • 资助金额:
    $ 83.91万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Co-designing Hardware, Software, and Algorithms to Enable Extreme-Scale Machine Learning Systems
协作研究:PPoSS:大型:共同设计硬件、软件和算法以实现超大规模机器学习系统
  • 批准号:
    2217071
  • 财政年份:
    2022
  • 资助金额:
    $ 83.91万
  • 项目类别:
    Continuing Grant
OAC Core: Small: Enabling High-fidelity Turbulent Reacting-Flow Simulations through Advanced Algorithms, Code Acceleration, and High-order Methods for Extreme-scale Computing
OAC 核心:小型:通过高级算法、代码加速和超大规模计算的高阶方法实现高保真湍流反应流模拟
  • 批准号:
    1909379
  • 财政年份:
    2019
  • 资助金额:
    $ 83.91万
  • 项目类别:
    Standard Grant
SHF: Small: Parallel Algorithms and Architectures Enabling Extreme-scale Graph Analytics for Biocomputing Applications
SHF:小型:并行算法和架构为生物计算应用提供超大规模图形分析
  • 批准号:
    1815467
  • 财政年份:
    2018
  • 资助金额:
    $ 83.91万
  • 项目类别:
    Standard Grant
Sublinear algorithms for visual analytics of extreme-scale networks
用于超大规模网络可视化分析的次线性算法
  • 批准号:
    DP180102553
  • 财政年份:
    2018
  • 资助金额:
    $ 83.91万
  • 项目类别:
    Discovery Projects
From needles to plates: The origin of extreme volcanic ash shapes and implications for dispersion modelling and retrieval algorithms
从针到板:极端火山灰形状的起源以及对分散建模和检索算法的影响
  • 批准号:
    1654654
  • 财政年份:
    2015
  • 资助金额:
    $ 83.91万
  • 项目类别:
    Studentship
Extreme-scale algorithms for geometric graphical data models in imaging, social and network science
成像、社会和网络科学中几何图形数据模型的超大规模算法
  • 批准号:
    1417674
  • 财政年份:
    2014
  • 资助金额:
    $ 83.91万
  • 项目类别:
    Continuing Grant
CAREER: Scalable Algorithms for Extreme Computing on Heterogeneous Hardware, with Applications in Fluids and Biology
职业:异构硬件上极限计算的可扩展算法,在流体和生物学中的应用
  • 批准号:
    1460035
  • 财政年份:
    2014
  • 资助金额:
    $ 83.91万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了