Accelerated Coordinate Descent Methods for Big Data Problems

大数据问题的加速坐标下降法

基本信息

  • 批准号:
    EP/K02325X/1
  • 负责人:
  • 金额:
    $ 12.83万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Much of modern society and economy, in the United Kingdom and elsewhere, is moving in the direction of digitization and computation. Humankind is now able to collect and store enormous quantities of digital data coming from sources such as health records (e.g., IBM ``Watson'' project, MRI/CT scans), government databases (e.g., e-Government, GORS: government operational research service), social networks (e.g., Facebook, Linked-IN, delicious), online news (e.g., New York Times article database), corporate databases (e.g., bank records, Amazon.com) and the internet. Global society is, as a consequence, facing many unprecedented challenges and opportunities. One of the biggest of these has to do with the ability (or rather, lack thereof) to distill, understand and utilize in an optimal way the information contained within these gigantic data sources. The main technology for this is to "form an optimization problem'' and then solve it using a well-chosen optimization algorithm in a suitable computing environment (e.g., a multicore workstation, GPU-enabled machine, cloud).In this project we aim to contribute to a breakthrough in our ability to solve optimization problems arising from big data domains via developing, analyzing and implementing new accelerated parallel coordinate descent (CD) methods. Since in big data problems the data is typically highly structured, well-designed CD methods can have very low memory requirements and arithmetic cost per iteration---often much smaller than the dimension of the problem. This is in sharp contrast with standard methods whose arithmetic complexity of a single iteration depends on the dimension at least quadratically.Our research objectives are:1. Acceleration Theory. We will analyze the iteration complexity (i.e., give bounds on the number of iterations/steps needed to achieve a prescribed level of accuracy) of new parallel coordinate descent methods accelerated using the following 4 strategies: a) nonuniformity (of the frequency with which individual coordinates are updated), b) asynchronicity (of updates and computation), c) distribution (of data and computation to nodes of a cluster) and d) inexactness (of certain operations and computations the algorithm depends on).2. Stochastic Gradient Descent. We will analyze theoretically and test numerically the relationship between parallel coordinate descent (CD) methods and parallel stochastic gradient descent (SGD) methods.3. ACDC Code. We will implement the accelerated algorithms in a code which we will make publicly available.
在英国和其他地方,现代社会和经济的大部分正在朝着数字化和计算的方向发展。人类现在能够收集和存储来自诸如健康记录(例如,IBM "沃森“项目,MRI/CT扫描),政府数据库(例如,电子政务,GORS:政府运营研究服务),社交网络(例如,Facebook、LinkedIn、delicious)、在线新闻(例如,纽约时报文章数据库)、公司数据库(例如,银行记录,Amazon.com)和互联网。因此,全球社会正面临许多前所未有的挑战和机遇。其中最大的挑战之一是以最佳方式提取、理解和利用这些巨大数据源中包含的信息的能力(或者更确切地说,缺乏这种能力)。其主要技术是“形成优化问题”,然后在合适的计算环境中使用精心选择的优化算法来解决它(例如,在这个项目中,我们的目标是通过开发、分析和实施新的加速并行坐标下降(CD)方法,在解决大数据领域产生的优化问题的能力上取得突破。由于在大数据问题中,数据通常是高度结构化的,因此设计良好的CD方法可以具有非常低的内存需求和每次迭代的算法成本-通常比问题的维度小得多。这与标准方法形成了鲜明的对比,标准方法的单次迭代的算术复杂度至少与维数成二次方关系。加速理论我们将分析迭代复杂度(即,给出实现规定精度水平所需的迭代/步骤的数量的界限)的新的并行坐标下降方法的加速使用以下4个策略:a)不均匀性(单个坐标更新的频率),B)重复性(更新和计算),c)(数据和计算到集群的节点的)分布和d)(算法所依赖的某些操作和计算的)不精确性。随机梯度下降。我们将从理论上和数值上分析并行坐标下降法和并行随机梯度下降法之间的关系. ACDC代码。我们将在代码中实现加速算法,我们将公开提供。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Accelerated, Parallel, and Proximal Coordinate Descent
  • DOI:
    10.1137/130949993
  • 发表时间:
    2013-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Olivier Fercoq;Peter Richtárik
  • 通讯作者:
    Olivier Fercoq;Peter Richtárik
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
  • DOI:
  • 发表时间:
    2015-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dominik Csiba;Zheng Qu;Peter Richtárik
  • 通讯作者:
    Dominik Csiba;Zheng Qu;Peter Richtárik
Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling
使用非均匀采样实现更快的加速坐标下降
  • DOI:
    10.48550/arxiv.1512.09103
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Allen-Zhu Zeyuan
  • 通讯作者:
    Allen-Zhu Zeyuan
STOCHASTIC PRIMAL-DUAL HYBRID GRADIENT ALGORITHM WITH ARBITRARY SAMPLING AND IMAGING APPLICATIONS
  • DOI:
    10.1137/17m1134834
  • 发表时间:
    2018-01-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Chambolle, Antonin;Ehrhardt, Matthias J.;Schonlieb, Carola-Bibiane
  • 通讯作者:
    Schonlieb, Carola-Bibiane
Adaptive restart of accelerated gradient methods under local quadratic growth condition
局部二次增长条件下加速梯度法的自适应重启
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Richtarik其他文献

Peter Richtarik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Richtarik', 18)}}的其他基金

Randomized Algorithms for Extreme Convex Optimization
极端凸优化的随机算法
  • 批准号:
    EP/N005538/1
  • 财政年份:
    2016
  • 资助金额:
    $ 12.83万
  • 项目类别:
    Fellowship

相似海外基金

How can we make use of one or more computationally powerful virtual robots, to create a hive mind network to better coordinate multi-robot teams?
我们如何利用一个或多个计算能力强大的虚拟机器人来创建蜂巢思维网络,以更好地协调多机器人团队?
  • 批准号:
    2594635
  • 财政年份:
    2025
  • 资助金额:
    $ 12.83万
  • 项目类别:
    Studentship
Antag0onistic histone modifiers coordinate flooding stress tolerance and memory in plants
拮抗组蛋白修饰剂协调植物的洪水胁迫耐受性和记忆
  • 批准号:
    BB/Y006062/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.83万
  • 项目类别:
    Research Grant
Transition: Metabolomics-driven understanding of rules that coordinate metabolic responses and adaptive evolution of synthetic biology chassis
转变:代谢组学驱动的对协调代谢反应和合成生物学底盘适应性进化的规则的理解
  • 批准号:
    2320104
  • 财政年份:
    2023
  • 资助金额:
    $ 12.83万
  • 项目类别:
    Standard Grant
Microscopic description of nuclear fission based on the generator coordinate method
基于发生器坐标法的核裂变微观描述
  • 批准号:
    23KJ1212
  • 财政年份:
    2023
  • 资助金额:
    $ 12.83万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
A dendritic nexus in the circuits that coordinate learning
协调学习的电路中的树突状连接
  • 批准号:
    10659554
  • 财政年份:
    2023
  • 资助金额:
    $ 12.83万
  • 项目类别:
Visuomotor Coordinate Transformation During Drosophila Chasing Behavior
果蝇追逐行为过程中视觉运动坐标的转变
  • 批准号:
    10601535
  • 财政年份:
    2023
  • 资助金额:
    $ 12.83万
  • 项目类别:
Low-Coordinate 3d Metal Complexes as Alternatives to Platinum Group Metals for Hydrogen Evolution Reaction
低配位 3d 金属配合物作为析氢反应铂族金属的替代品
  • 批准号:
    2889261
  • 财政年份:
    2023
  • 资助金额:
    $ 12.83万
  • 项目类别:
    Studentship
Research Infrastructure: CC* Campus Compute: Next-Generation Shared HPC Cluster to Coordinate Campus Cyberinfrastructure and Accelerate Interdisciplinary Research
研究基础设施:CC* 校园计算:下一代共享 HPC 集群,以协调校园网络基础设施并加速跨学科研究
  • 批准号:
    2321443
  • 财政年份:
    2023
  • 资助金额:
    $ 12.83万
  • 项目类别:
    Standard Grant
BRAIN CONNECTS: Mapping Connectivity of the Human Brainstem in a Nuclear Coordinate System
大脑连接:在核坐标系中绘制人类脑干的连接性
  • 批准号:
    10664289
  • 财政年份:
    2023
  • 资助金额:
    $ 12.83万
  • 项目类别:
Mechanisms of cellular morphogenesis that coordinate signaling during tissue patterning
组织模式形成过程中协调信号传导的细胞形态发生机制
  • 批准号:
    10714654
  • 财政年份:
    2023
  • 资助金额:
    $ 12.83万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了