Causal Counterfactual visualisation for human causal decision making - A case study in healthcare

人类因果决策的因果反事实可视化 - 医疗保健领域的案例研究

基本信息

  • 批准号:
    EP/X029778/1
  • 负责人:
  • 金额:
    $ 77.36万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

The concept of causation is central to our understanding of the world and key to human decision making. Causation is fundamentally different from association as it exhibits consequences of interventions. Evidence shows that different causal beliefs tend to result in different health outcomes. At present, psychology research still does not provide answers to many fundamental questions about how people make causal judgements in real-world decisions. According to recent psychological theories of causation, people's causal judgments are based on assessing whether (and how) an presumed cause makes a difference to an outcome. Crucially, these judgements hinge on counterfactual contrasts, namely what would have happened if the presumed cause had not occurred? This involves envisaging alternative possibilities to the actual world in mental simulations. To this end, visualisation has great potential to support people's counterfactual thinking, especially in the face of complex scenarios. However, so far very little work has addressed counterfactual visualisation in the context of aiding causal decision making.This research will investigate novel causal counterfactual visualisation, which will, in contrast to the direct visualisation of real data, have a new functionality to render causal counterfactuals that did not occur in reality. The counterfactuals will be generated by a counterfactual simulation model that is trained with real data. This extends standard data visualisation by visualising hypothetical exemplars beyond real data. It will support "explanation-with-examples" by enabling decision makers to interactively create synthetic data and examine "close possible worlds" (e.g. different outcomes from a small causal change). Visualising concrete exemplars will allow people to view key evidence and contest their decisions against the counterfactuals to gain actionable insights.Causal counterfactual visualisation will be underpinned by the latest advance in both psychology and AI domains made by the members of this team. By bringing together expertise from a multidisciplinary team, the new causal counterfactual visualisation techniques will offer an useful channel to assess and further our understanding of human behaviour and performance in causal decision making with the aid of visual presentation, especially with respect to the role of visualisation.We will conduct a series of psychological experiments in the context of clinical case studies to probe causal decision making in healthcare, which will involve participations and co-design with doctors. Doctors will use the visualisation tool to make and test causal hypotheses for decision making in the psychological experiments involving two clinical cases: (1) Clinical judgement based on causal risk factors of developing lung cancer, which targets unit-level causality about individual patients; (2) Clinical trial of a drug by measuring its causal effect on diabetes treatment, which targets causation at the population-level. With customised simulations, the visualisation will reveal potential outcomes of alternative treatments and their trade-off in efficacy & side-effects to enable comparisons by visualising concrete counterfactuals (e.g. medical tests, screening, images). Also, researchers can assess difference between treatment and control groups in a simulated clinical trial, and view examples that violate their hypotheses. Through the two clinical use cases, the research outcomes will be directly measured in the healthcare setting, where clinicians face complex landscape of medicine with overwhelming number of input and interplay of data from multiple sources to make important clinical decisions. This work is about to demonstrate how the new visualisation can seek to resolve this leading to reduction variability and support robust decision making with actionable insights that clinicians can interpret.
因果关系的概念是我们理解世界的核心,也是人类决策的关键。因果关系从根本上不同于关联,因为它展示了干预的后果。有证据表明,不同的因果信念往往会导致不同的健康结果。目前,心理学研究仍然没有提供关于人们如何在现实世界中做出因果判断的许多基本问题的答案。根据最近的因果关系心理学理论,人们的因果判断是基于评估一个假定的原因是否(以及如何)对结果产生影响。至关重要的是,这些判断取决于反事实的对比,即如果假定的原因没有发生,会发生什么?这包括在心理模拟中设想现实世界的替代可能性。为此,视觉化有很大的潜力来支持人们的反事实思维,特别是在面对复杂的场景时。然而,到目前为止,很少有工作已经解决了反事实可视化的背景下,帮助因果decisionmaking.本研究将探讨新的因果反事实可视化,这将,在对比的直接可视化的真实的数据,有一个新的功能,使因果反事实,并没有发生在现实中。反事实将由一个反事实模拟模型生成,该模型是用真实的数据训练的。这扩展了标准的数据可视化,通过可视化真实的数据之外的假设样本。它将通过使决策者能够交互式地创建合成数据并审查“封闭的可能世界”(例如,一个小的因果变化的不同结果),支持“举例说明”。可视化具体的范例将允许人们查看关键证据,并与反事实进行辩论,以获得可操作的见解。因果反事实可视化将得到该团队成员在心理学和人工智能领域的最新进展的支持。通过汇集来自多学科团队的专业知识,新的因果反事实可视化技术将提供一个有用的渠道,以评估和促进我们对人类行为和因果决策表现的理解,特别是关于形象化的作用。我们将在临床案例研究的背景下进行一系列心理学实验,以探讨医疗保健,这将涉及与医生的参与和共同设计。医生将使用可视化工具在涉及两个临床病例的心理学实验中做出和测试因果假设,以进行决策:(1)基于肺癌发生的因果风险因素的临床判断,目标是个体患者的单位水平因果关系;(2)通过测量药物对糖尿病治疗的因果作用进行临床试验,目标是人群水平的因果关系。通过定制的模拟,可视化将揭示替代治疗的潜在结果及其在疗效和副作用方面的权衡,以便通过可视化具体的反事实(例如医学测试,筛查,图像)进行比较。此外,研究人员可以在模拟临床试验中评估治疗组和对照组之间的差异,并查看违反他们假设的例子。通过这两个临床用例,研究成果将在医疗环境中直接测量,临床医生面临着复杂的医学环境,来自多个来源的大量输入和相互作用的数据将做出重要的临床决策。这项工作将展示新的可视化如何寻求解决这一问题,从而减少变异性,并通过临床医生可以解释的可操作见解支持稳健的决策。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Feng Dong其他文献

Mechanically-induced enhancement and modulation of upconversion photoluminescence by bending lanthanide doped perovskite oxides
通过弯曲镧系元素掺杂钙钛矿氧化物机械诱导增强和调制上转换光致发光
  • DOI:
    10.1364/ol.448137
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Feng Dong;Haisheng Chen;Zhengang Dong;Xiaona Du;Wenwen Chen;Mingqun Qi;Jiaying Shen;Yongtao Yang;Tianhong Zhou;Zhenping Wu;Yang Zhang
  • 通讯作者:
    Yang Zhang
DNA Extraction and Construction of a Metagenomic Fosmid Library of Alpine Meadow Soil from the Mila Mountains in Tibet, China*
中国西藏米拉山高寒草甸土壤 DNA 提取及宏基因组 Fosmid 文库构建*
Phase transition in a two-dimensional Ising ferromagnet based on the generalized zero-temperature Glauber dynamics
基于广义零温格劳伯动力学的二维伊辛铁磁体的相变
  • DOI:
    10.1088/1674-1056/22/12/127501
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Meng Qingkuan;Feng Dong;Gao Xu;Mei Yu
  • 通讯作者:
    Mei Yu
The Regional Carbon Emission Performance Analysis in Jiangsu Province Based on Environment Production Technology
基于环境生产技术的江苏省区域碳排放绩效分析
Flow state monitoring of gas-water two-phase flow using multi-Gaussian mixture model based on canonical variate analysis
基于正则变量分析的多高斯混合模型气水两相流流动状态监测
  • DOI:
    10.1016/j.flowmeasinst.2021.101904
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Feng Dong;Wentao Wu;Shumei Zhang
  • 通讯作者:
    Shumei Zhang

Feng Dong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Feng Dong', 18)}}的其他基金

Virtual Clinical Trial Emulation with Generative AI Models
使用生成式 AI 模型进行虚拟临床试验仿真
  • 批准号:
    MR/X005925/1
  • 财政年份:
    2022
  • 资助金额:
    $ 77.36万
  • 项目类别:
    Research Grant
MyLifeHub: An interoperability hub for aggregating lifelogging data from heterogeneous sensors and its applications in ophthalmic care
MyLifeHub:一个互操作性中心,用于聚合来自异构传感器的生活记录数据及其在眼科护理中的应用
  • 批准号:
    EP/L023830/1
  • 财政年份:
    2014
  • 资助金额:
    $ 77.36万
  • 项目类别:
    Research Grant
Animating Humans from Static Images via an Entirely Image-Based Approach
通过完全基于图像的方法从静态图像中赋予人类动画
  • 批准号:
    EP/F066473/1
  • 财政年份:
    2008
  • 资助金额:
    $ 77.36万
  • 项目类别:
    Research Grant
Amplifiable Bi-directional Texture Functions for 3D High Fidelity Images
用于 3D 高保真图像的可放大双向纹理函数
  • 批准号:
    EP/C006623/2
  • 财政年份:
    2007
  • 资助金额:
    $ 77.36万
  • 项目类别:
    Research Grant
Amplifiable Bi-directional Texture Functions for 3D High Fidelity Images
用于 3D 高保真图像的可放大双向纹理函数
  • 批准号:
    EP/C006623/1
  • 财政年份:
    2006
  • 资助金额:
    $ 77.36万
  • 项目类别:
    Research Grant

相似海外基金

Harmonizing multiple clinical trials for Alzheimer's disease to investigate differential responses to treatment via federated counterfactual learning
协调阿尔茨海默病的多项临床试验,通过联合反事实学习研究对治疗的差异反应
  • 批准号:
    10714797
  • 财政年份:
    2023
  • 资助金额:
    $ 77.36万
  • 项目类别:
Doctoral Dissertation Research: Understanding possibilities in children's counterfactual reasoning
博士论文研究:理解儿童反事实推理的可能性
  • 批准号:
    2234592
  • 财政年份:
    2023
  • 资助金额:
    $ 77.36万
  • 项目类别:
    Standard Grant
Counterfactual Assessment and Valuation for Awareness Architecture
意识架构的反事实评估和估值
  • 批准号:
    10069044
  • 财政年份:
    2022
  • 资助金额:
    $ 77.36万
  • 项目类别:
    EU-Funded
III: Medium: Counterfactual-Based Supports For Visual Causal Inference
III:媒介:基于反事实的视觉因果推理支持
  • 批准号:
    2211845
  • 财政年份:
    2022
  • 资助金额:
    $ 77.36万
  • 项目类别:
    Standard Grant
CAVAA: Counterfactual Assessment and Valuation for Awareness Architecture
CAVAA:意识架构的反事实评估和估值
  • 批准号:
    10039052
  • 财政年份:
    2022
  • 资助金额:
    $ 77.36万
  • 项目类别:
    EU-Funded
Developing Counterfactual Inference Methods for Clinical Trial Recruitment and Effective Integration of Weak Instrumental Variables.
开发用于临床试验招募和弱工具变量有效整合的反事实推理方法。
  • 批准号:
    2747848
  • 财政年份:
    2022
  • 资助金额:
    $ 77.36万
  • 项目类别:
    Studentship
The role of attentional bias, counterfactual thinking, and protective behavioral strategies in ENDS users
注意力偏差、反事实思维和保护性行为策略在 ENDS 用户中的作用
  • 批准号:
    10828482
  • 财政年份:
    2022
  • 资助金额:
    $ 77.36万
  • 项目类别:
Discovering what improves mental health and wellness outcomes for Métis youth in British Columbia: A secondary data analysis in the counterfactual framework of causal inference
发现什么可以改善不列颠哥伦比亚省梅蒂斯青年的心理健康和健康结果:因果推理反事实框架中的二次数据分析
  • 批准号:
    477549
  • 财政年份:
    2022
  • 资助金额:
    $ 77.36万
  • 项目类别:
    Studentship Programs
Doctoral Dissertation Research: Child Production and Comprehension of Counterfactual Wishes and Conditionals
博士论文研究:儿童的产生以及对反事实愿望和条件的理解
  • 批准号:
    2114756
  • 财政年份:
    2021
  • 资助金额:
    $ 77.36万
  • 项目类别:
    Standard Grant
Quantifying the burden of depressive symptoms in older Americans that is attributable to involuntary job loss: a counterfactual approach
量化美国老年人因非自愿失业而产生的抑郁症状负担:反事实方法
  • 批准号:
    10302605
  • 财政年份:
    2021
  • 资助金额:
    $ 77.36万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了