Enhancing Heat Transfer in Porous Metals through Optimisation of Flow Resistance

通过优化流动阻力增强多孔金属的传热

基本信息

  • 批准号:
    EP/N006550/1
  • 负责人:
  • 金额:
    $ 33.2万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Thermal management has become a critical issue in electronics because of increasing volumetric power densities and the harsh environments in which they are deployed. Active cooling is often required for high rates of heat dissipation because conventional passive cooling techniques are inadequate. Porous metal has been demonstrated to be highly efficient and cost effective in heat dissipation by forced fluid cooling. A main problem impeding its wider application is the high pumping power required to move the working fluid through the cooling device due to its large resistance to fluid flow.This project sets out to address the scientific and technical issues in thermal applications of porous metals manufactured by the space holder methods, which have distinctive porous structure and unique heat transfer behaviour. The aims of the research are to understand the mechanistic relationships between flow resistance, heat transfer and pore structure and to develop technologies to create tailored porous metal structures for significantly enhanced heat transfer performance with minimised flow resistance. A combination of manufacturing, properties characterisation, modelling and process development will be carried out to identify the fundamental structural properties underpinning the thermal fluid behaviour in porous metals, to quantify their effects on heat transfer coefficient and fluid flow resistance, and to design and create heterogeneous porous structures for a step change in overall active cooling performance. The global market for thermal management products is more than $10 billion with an annual growth rate of 6.8%. UK has a significant share in this market and is one of the leaders in developing new materials and technologies for active cooling devices for electronics. This project will provide scientific understanding and technical development underpinning the design and manufacture of a promising class of porous metals that are currently being developed by industry for thermal management applications. This research will ensure that UK maintains the leading position in this niche field. This research will also benefit the research and development of non-thermal porous products for environmental and energy applications, e.g., sound absorbers, porous electrodes and catalyst supports, where flow resistance has a deterministic effect.
由于体积功率密度的增加和部署环境的恶劣,热管理已成为电子领域的一个关键问题。由于传统的被动冷却技术是不够的,因此通常需要主动冷却来实现高速率的散热。多孔金属已被证明是高效和成本效益的散热强制流体冷却。阻碍其更广泛应用的一个主要问题是,由于其对流体流动的大阻力,使工作流体移动通过冷却装置所需的高泵送功率。本项目着手解决通过空间保持器方法制造的多孔金属热应用中的科学和技术问题,该多孔金属具有独特的多孔结构和独特的传热行为。该研究的目的是了解流动阻力,传热和孔结构之间的机械关系,并开发技术,以创建定制的多孔金属结构,以显着提高传热性能,最大限度地减少流动阻力。将进行制造、特性表征、建模和工艺开发的组合,以确定支撑多孔金属中热流体行为的基本结构特性,量化其对传热系数和流体流动阻力的影响,并设计和创建异质多孔结构,以实现整体主动冷却性能的阶跃变化。全球热管理产品市场规模超过100亿美元,年增长率为6.8%。英国在这一市场中占有重要份额,是开发电子主动冷却设备新材料和技术的领导者之一。该项目将提供科学的理解和技术发展,支持设计和制造一种有前途的多孔金属,目前正在开发的行业热管理应用。这项研究将确保英国在这一利基领域保持领先地位。该研究还将有利于环境和能源应用的非热多孔产品的研究和开发,例如,吸声器、多孔电极和催化剂载体,其中流动阻力具有确定性影响。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Flow measurements in microporous media using micro-particle image velocimetry
  • DOI:
    10.1103/physrevfluids.3.104202
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Xianke Lu;Yuyuan Zhao;D. Dennis
  • 通讯作者:
    Xianke Lu;Yuyuan Zhao;D. Dennis
Permeability, Form Drag Coefficient and Heat Transfer Coefficient of Porous Copper
  • DOI:
    10.1080/01457632.2020.1723841
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    J. Baloyo;Yuyuan Zhao
  • 通讯作者:
    J. Baloyo;Yuyuan Zhao
Measurement of tortuosity of porous Cu using a diffusion diaphragm cell
使用扩散隔膜池测量多孔铜的弯曲度
  • DOI:
    10.1016/j.measurement.2017.07.014
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Diao K
  • 通讯作者:
    Diao K
Fluid flow characterisation in randomly packed microscale porous beds with different sphere sizes using micro-particle image velocimetry
  • DOI:
    10.1016/j.expthermflusci.2020.110136
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Xianke Lu;Yuyuan Zhao;D. Dennis
  • 通讯作者:
    Xianke Lu;Yuyuan Zhao;D. Dennis
Heat Transfer Performance of LCS Porous Copper with Different Structural Characteristics
  • DOI:
    10.4028/www.scientific.net/msf.933.380
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Diao;Xianke Lu;Z. Wu;Yuyuan Zhao
  • 通讯作者:
    K. Diao;Xianke Lu;Z. Wu;Yuyuan Zhao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuyuan Zhao其他文献

Thermal Properties of Porous Copper Manufactured by Lost Carbonate Sintering
消失碳烧结法制备多孔铜的热性能
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Z. Xiao;Yuyuan Zhao
  • 通讯作者:
    Yuyuan Zhao
Tensile behavior of a bi-layered bronze/steel sheet: Synergetic effects of microstructure and residual stress
  • DOI:
    10.1016/j.matchar.2022.112568
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
  • 作者:
    Xingrui Jiang;Kesong Miao;Hao Wu;Rengeng Li;Yiping Xia;Min Chen;Yuyuan Zhao;Jinchuan Jie;Guohua Fan
  • 通讯作者:
    Guohua Fan
Hydrogen storage and electrochemical properties of 3R- and 2H-Asub5/subBsub19/sub structures in La-Y-Ni-based alloys
镧钇镍基合金中 3R-和 2H-Asub5/subBsub19/sub 结构的储氢和电化学性能
  • DOI:
    10.1016/j.jallcom.2023.170951
  • 发表时间:
    2023-10-15
  • 期刊:
  • 影响因子:
    6.300
  • 作者:
    Li Wang;Yuyuan Zhao;Xu Zhang;Qianwen Liu;Qun Luo;Zhihong Yu;Xiaohua Yang;Qian Li
  • 通讯作者:
    Qian Li
Ti matrix syntactic foam fabricated by powder metallurgy: Particle breakage and elastic modulus
  • DOI:
    10.1007/s11837-011-0027-0
  • 发表时间:
    2011-02-19
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Xiaobing Xue;Yuyuan Zhao
  • 通讯作者:
    Yuyuan Zhao
A strategy for high-entropy copper alloys composition design assisted by deep learning based on data reconstruction and network structure optimization
基于数据重构和网络结构优化的深度学习辅助高熵铜合金成分设计策略
  • DOI:
    10.1016/j.jmrt.2024.06.037
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fei Tan;Yanbin Jiang;Qian Lei;Hongtao Zhang;Lijun Zhang;Zhu Xiao;Guofu Xu;Yuyuan Zhao;Zhou Li
  • 通讯作者:
    Zhou Li

Yuyuan Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

环路热管(Loop Heat Pipe)两相传热机理的理论与实验研究
  • 批准号:
    50676006
  • 批准年份:
    2006
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Modelling heat and mass transfer during liquid hydrogen refuelling
模拟液氢加注过程中的传热和传质
  • 批准号:
    2911016
  • 财政年份:
    2024
  • 资助金额:
    $ 33.2万
  • 项目类别:
    Studentship
CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions
职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证
  • 批准号:
    2339032
  • 财政年份:
    2024
  • 资助金额:
    $ 33.2万
  • 项目类别:
    Continuing Grant
Heat Transfer for Hydrogen-based Propulsion
氢基推进的传热
  • 批准号:
    2902853
  • 财政年份:
    2024
  • 资助金额:
    $ 33.2万
  • 项目类别:
    Studentship
Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
  • 批准号:
    2414527
  • 财政年份:
    2024
  • 资助金额:
    $ 33.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
  • 批准号:
    2327571
  • 财政年份:
    2023
  • 资助金额:
    $ 33.2万
  • 项目类别:
    Standard Grant
Elucidation of critical heat flux improvement mechanism by evaluation of liquid wicking performance during heating of porous heat transfer surface
通过评估多孔传热表面加热过程中液体芯吸性能来阐明临界热通量改善机制
  • 批准号:
    23K13264
  • 财政年份:
    2023
  • 资助金额:
    $ 33.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Microscale enabled advanced flow and heat transfer technologies featuring high performance and low power consumption; Acronym: Micro-FloTec
微尺度实现了高性能、低功耗的先进流动和传热技术;
  • 批准号:
    EP/Y004973/1
  • 财政年份:
    2023
  • 资助金额:
    $ 33.2万
  • 项目类别:
    Research Grant
Heat transfer to/from a droplet passing through a microchannel under an alternating electric field
在交变电场下通过微通道的液滴之间的传热
  • 批准号:
    23K03708
  • 财政年份:
    2023
  • 资助金额:
    $ 33.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of the whole picture and heat transfer process of pool boiling phenomenon in liquid hydrogen from atmospheric to critical pressure
阐明液氢从常压到临界压力池沸腾现象的全貌及传热过程
  • 批准号:
    23H01349
  • 财政年份:
    2023
  • 资助金额:
    $ 33.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Micro-FloTec: Microscale enabled advanced flow and heat transfer technologies featuring high performance and low power consumption
Micro-FloTec:Microscale 支持先进的流动和传热技术,具有高性能和低功耗的特点
  • 批准号:
    EP/X038319/1
  • 财政年份:
    2023
  • 资助金额:
    $ 33.2万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了