Solar Powered Thermochemical Energy Storage

太阳能热化学储能

基本信息

  • 批准号:
    EP/N018451/1
  • 负责人:
  • 金额:
    $ 65.31万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

As considerable energy is consumed by UK buildings, not surprisingly, the Government targets for reducing carbon emissions require an 80% energy reduction in this area by 2050. Thermochemical (i.e. water sorption-based) heat storage (THS) can play a pivotal role in synchronizing energy demand and supply in buildings. Transformation of the existing British building stock towards net zero energy buildings requires effective integration and full use of the potential yield of renewable energy. Thermal storage is a key priority to make such a step, particularly for the energy renovation of the existing stock, where compact building level solutions are required. Thermal energy storage can be accomplished using sensible heat storage (SHS), latent heat storage (LHS) or THS. Over these methods THS has approximately 6-10 times higher storage density than SHS, and two times higher than LHS materials when compared on a like for like storage volume basis. In THS, thermochemical energy can be stored independent of the time without any heat loss, permitting solar energy storage during the summer to meet heating demand in winter. Achieving this by other heat storage methods is both complex and expensive. The proposed project will deliver an advanced solar powered THS system, which has stable long term performance in multi-cyclic seasonal use of at least 20 years. The system will contain environmental friendly and safe materials and will be compact, enabling installation in the limited space available in the existing housing stock and as well in the new buildings. Although seasonal storage of solar energy is intended within the proposed project (e.g. V=3-4 m3), it is also possible to design it as short term storage (3-4 days) only with resizing the THS reactor (e.g. V=0.1-0.2 m3). The proposed thermal storage system will lead to significant energy savings (greater than 50%) and CO2 emissions reduction, with a maximum payback of 5 years compared to the current state-of-the-art.The project integrates multiple units of THS with solar air collectors to optimise the performance of these technologies providing seasonal heat storage in both the new and existing UK buildings that has: (a) low cost; (b) higher performance; (c) higher availability; (d) higher durability; (e) improved on-site health and safety; (f) efficient sorption and desorption processes (g) high solar contribution and (f) implementation of the computer design tools. The target is the development of an innovative, highly efficient thermochemical energy storage system with the following technical advantages:* The theory and methodology of the THS reactor incorporating multiple sorption beds with hollow fibre membranes in a unique design that increases efficiency and reliability, thereby improving the current technologies and increasing system energy performance. Fundamental heat/mass transfer formulation and model for membrane fibre/reactor system.* Theory and methodology for the novel evaporative humidifier integrated with heat pipe model for utilizing ground energy to ease evaporation of water and enhancing energy input to the system. * Theory and methodology for the highly efficient solar air collectors to drive the system and achieve efficient sorption and desorption processes.* The characterisation and adaptation of new and safety improved nano-composite sorbents, reducing barriers associated with new energy storage concepts.* The theory and methodology for the advanced ICT optimized control, data/performance monitoring and energy management systemThe project provides an opportunity for UK industries to pioneer the development of a new advanced energy storage technology. It will deliver a sustainable, environmental and cost-effective solution to significantly reduce energy consumption and CO2/GHG emissions. The project will contribute to UK excellence in terms of addressing fuel poverty and improving the quality of life for its citizens.
由于英国建筑物消耗了大量能源,因此政府的降低碳排放量的目标需要到2050年到2050年的80%的能源。热化学(即基于水吸附)的热量储存(THS)可以在建筑物中的能源需求和供应中发挥关键作用。现有的英国建筑股票向净零能源建筑物的转换需要有效整合并充分利用可再生能源的潜在产量。热存储是迈出这样一步的关键优先事项,尤其是对于需要紧凑的建筑水平解决方案的现有库存的能量翻新。可以使用明智的热量存储(SHS),潜热存储(LHS)或TH来实现热能储能。在这些方法上,THS的存储密度大约是SHS的6-10倍,而与LHS材料相比,与LHS材料相比,基于储存量的材料比LHS材料高两倍。在THS中,热化学能可以独立于时间来存储,而无需任何热量损失,允许在夏季太阳能存储以满足冬季的供暖需求。通过其他供热储存方法实现这一目标既复杂又昂贵。拟议的项目将提供高级太阳能THS系统,该系统在至少20年的多环季节使用中具有稳定的长期性能。该系统将包含环境友好和安全的材料,并将紧凑,可在现有住房库存的有限空间以及新建筑物中的有限空间中进行安装。尽管季节性的太阳能存储是在拟议的项目中(例如V = 3-4 m3)内的,但仅在调整THS反应器大小(例如V = 0.1-0.2 M3)的情况下,也可以将其设计为短期存储(3-4天)。拟议的热存储系统将导致大量节能(大于50%)和二氧化碳排放量减少,与当前的最新最新回报相比,最高回报为5年。该项目将THS的多个单位与太阳能空气收集器集成在一起,以优化这些技术在新的和现有的UK建筑物中提供季节性热量的性能的性能。 (b)更高的性能; (c)更高的可用性; (d)较高的耐用性; (e)改善现场健康和安全; (f)有效的吸附和解吸过程(g)高太阳能贡献和(f)计算机设计工具的实施。目标是开发具有以下技术优势的创新,高效的热化学能源存储系统:* THS反应堆的理论和方法论,将多个吸附床与空心纤维膜结合在独特的设计中,从而提高了效率和可靠性,从而提高了当前技术并提高了当前技术并提高了系统的系统能量性能。膜纤维/反应堆系统的基本热/传质配方和模型。 *高效太阳能空气收集器以推动系统并实现有效的吸附和解吸过程的理论和方法。它将提供可持续的,环境和成本效益的解决方案,以大大减少能源消耗和CO2/GHG排放。该项目将在解决燃料贫困和改善其公民生活质量方面有助于英国卓越。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thermochemical heat storage material using a salt mixture
使用盐混合物的热化学储热材料
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jarimi H
  • 通讯作者:
    Jarimi H
Open system and materials of thermochemical energy storage in built environment
建筑环境热化学储能开放系统及材料
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhang Y
  • 通讯作者:
    Zhang Y
Synthesis and Characterization of Salt in Matrix composite materials for open cycle thermochemical heat storage for building applications
建筑应用开式循环热化学蓄热基体复合材料中盐的合成和表征
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ramadan O
  • 通讯作者:
    Ramadan O
A state-of-the-art review on thermochemical cooling system
热化学冷却系统的最新进展综述
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhang Y
  • 通讯作者:
    Zhang Y
Innovative Open Sorption Thermochemical Energy Storage System for Building Applications
适用于建筑应用的创新开放式吸附热化学储能系统
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dodo A
  • 通讯作者:
    Dodo A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Saffa Riffat其他文献

A hydronic closed-loop photovoltaic cooling system designed for hot and arid regions: Performance evaluation and degradation rate/lifetime analysis
  • DOI:
    10.1016/j.apenergy.2024.123999
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hazim Dirawi;Qiliang Wang;Mingke Hu;Yuehong Su;Saffa Riffat
  • 通讯作者:
    Saffa Riffat
A study on the combination of crystallization-controllable phase change materials and solar-assisted heat pump for electricity demand shifting in space heating
  • DOI:
    10.1016/j.enconman.2024.119260
  • 发表时间:
    2025-01-15
  • 期刊:
  • 影响因子:
  • 作者:
    Cagri Kutlu;Mehmet Tahir Erdinc;Abdullah Dik;Ziwei Chen;Qinghua Lyu;Yuehong Su;Saffa Riffat
  • 通讯作者:
    Saffa Riffat
An experimental study of a novel integrated desiccant air conditioning system for building applications
  • DOI:
    10.1016/j.enbuild.2015.11.065
  • 发表时间:
    2016-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Theo Elmer;Mark Worall;Shenyi Wu;Saffa Riffat
  • 通讯作者:
    Saffa Riffat
Enhancing radiative sky cooling performance by employing crossed compound parabolic concentrating configurations
  • DOI:
    10.1016/j.renene.2024.121979
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ya Dan;Mingke Hu;Qiliang Wang;Yuehong Su;Saffa Riffat
  • 通讯作者:
    Saffa Riffat
Comprehensive performance analysis of a novel closed-loop hydronic cooling of photovoltaic panel with a controlled intermittent flow strategy
  • DOI:
    10.1016/j.renene.2024.122185
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hazim Dirawi;Qiliang Wang;Mingke Hu;Yuehong Su;Saffa Riffat
  • 通讯作者:
    Saffa Riffat

Saffa Riffat的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Saffa Riffat', 18)}}的其他基金

"Low cost air quality device for virus removal from indoor air environment and public transport (EP/V049100/1)"
“用于去除室内空气环境和公共交通中病毒的低成本空气质量装置(EP/V049100/1)”
  • 批准号:
    EP/W010917/1
  • 财政年份:
    2021
  • 资助金额:
    $ 65.31万
  • 项目类别:
    Research Grant
A versatile PCM energy storage system for building applications (Versatile PCM)
适用于建筑应用的多功能 PCM 储能系统(Versatile PCM)
  • 批准号:
    EP/T02318X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 65.31万
  • 项目类别:
    Research Grant
External Heat Engine mCHP
外热机 mCHP
  • 批准号:
    EP/R000182/1
  • 财政年份:
    2018
  • 资助金额:
    $ 65.31万
  • 项目类别:
    Research Grant
ISCF WAVE 1 AGRI TECH_Animal WelfAir
ISCF WAVE 1 AGRI TECH_动物福利空气
  • 批准号:
    BB/R021511/1
  • 财政年份:
    2018
  • 资助金额:
    $ 65.31万
  • 项目类别:
    Research Grant
A Revolutionary Rotary Ericsson Heat Pump/Engine
革命性的旋转爱立信热泵/发动机
  • 批准号:
    EP/P510713/1
  • 财政年份:
    2016
  • 资助金额:
    $ 65.31万
  • 项目类别:
    Research Grant
Micro-CHP using steam ejector/water turbine (WaterGen)
使用蒸汽喷射器/水轮机 (WaterGen) 的微型热电联产
  • 批准号:
    EP/N509875/1
  • 财政年份:
    2016
  • 资助金额:
    $ 65.31万
  • 项目类别:
    Research Grant
15AGRITECHCAT3 WelChic - Welfare Enhanced Living Conditions for healthier Chickens
15AGRITECHCAT3 WelChic - 改善健康鸡的生活条件
  • 批准号:
    BB/N004744/1
  • 财政年份:
    2015
  • 资助金额:
    $ 65.31万
  • 项目类别:
    Research Grant
ACTIONS
行动
  • 批准号:
    EP/M506692/1
  • 财政年份:
    2014
  • 资助金额:
    $ 65.31万
  • 项目类别:
    Research Grant

相似国自然基金

返回舱(器)再入跨流域热化学非平衡气动力/热绕流问题模拟研究
  • 批准号:
    12332013
  • 批准年份:
    2023
  • 资助金额:
    239.00 万元
  • 项目类别:
    重点项目
钙镁水合盐多孔复合储热材料的热质传输与水合反应耦合机理研究
  • 批准号:
    51906157
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
储热多孔介质热化学反应和孔隙/宏观尺度气固两相耦合热质传递机理
  • 批准号:
    51876118
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
含氮杂化羧酸配体构筑的稀土配合物的结构、荧光及热分解动力学和热力学研究
  • 批准号:
    21803016
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
Ca(OH)2储热过程中的化学热动力学与传热传质耦合机理研究
  • 批准号:
    51706130
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

AI-powered portable MRI abnormality detection (APPMAD)
人工智能驱动的便携式 MRI 异常检测 (APPMAD)
  • 批准号:
    MR/Z503812/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.31万
  • 项目类别:
    Research Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 65.31万
  • 项目类别:
    Standard Grant
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
  • 批准号:
    2301410
  • 财政年份:
    2024
  • 资助金额:
    $ 65.31万
  • 项目类别:
    Standard Grant
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
  • 批准号:
    2301405
  • 财政年份:
    2024
  • 资助金额:
    $ 65.31万
  • 项目类别:
    Continuing Grant
CAREER: Optogel Proteomics: unbiased subcellular proteomics powered by photoreactions in hydrogel
职业:Optogel 蛋白质组学:由水凝胶中的光反应驱动的无偏亚细胞蛋白质组学
  • 批准号:
    2341058
  • 财政年份:
    2024
  • 资助金额:
    $ 65.31万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了