External Heat Engine mCHP
外热机 mCHP
基本信息
- 批准号:EP/R000182/1
- 负责人:
- 金额:$ 56.12万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Building sector accounts for more than 60% of total energy consumption in the world, while the share of domestic buildings is about 20-40%. The energy consumed is mostly utilised for heating, cooling and ventilation purposes, contributing massively to fossil fuels consumption and thus CO2 emissions. Combined heat and power (CHP) systems generate electricity and harness the heat by-product for heating of buildings. Currently CHP systems deliver a combined efficiency of up to 80%, residential and small business bills can be reduced by 20-40%, and carbon production can be reduced by 30%. They also offer fuel flexibility, and being an independent system, reduce demand on centralised power supply and distribution systems. The current roadmap for UK CHP implementation will, by 2030, yield primary energy savings of 85-86TWh/a with a savings of 10-14Mt/a. The mCHP market is currently served by Stirling, ICE, and ORC systems, all of which have significant issues that limit wide mCHP installations. The proposed ECHP system will lead to significant energy savings (greater than 40%), CO2 emissions reduction and will be approximately 30% more efficient than current mCHP systems due to unique geometry and control system applied to the highly efficient Ericsson cycle. The ECHP will use Helium, eliminating the need for HFCs. Being an external heat engine allows the use of a variety of fuels from gas, petrol, diesel, biogas, biomass, etc. The small size and silent, vibration free operation allows renovating existing building stock where the system could be installed in constrained boiler spaces. If successful, the entirely new class of mCHP will be ideally suited for new and existing UK buildings and have: (a) high efficiency; (b) low maintenance; (c) silent and low vibration; (d) HFC free; (e) compact design; (f) implementation of a simple, consumer friendly GUI interface allowing optimal system control; and (g) use external heat source, allowing a wide variety of fuels. The proposed ECHP system is expected to have the following technical advantages: a system incorporating optimised compressor and expander geometry to approach isothermal operation, computer control of individual rotor motor-generators to optimise cycle efficiency and quicker start to operation times, system integration of combustion chamber, expander, recuperator, and compressor for maximum efficiency, and an optimized control algorithm with GUI control to create a mCHP suitable for demonstration of the theory and research development. Research will begin with description of the theoretical concept in relation to the ideal Ericsson cycle. System components will be modelled, to include various geometries. Using developed computer analysis programs and CFD, rotor design, porting, and recuperator component designs will be optimised as individual components then as an integrated system. Computer simulation models will be used to predict the thermal and electrical performance of the ECHP system. This process will perform an optimisation study of the system by taking into account the influence of different parameters of the ECHP system and power output efficiency. Changes to the parameters and components will be evaluated as required. Only when the feasibility of the system is proven, components will be fabricated and electronic control hardware/software will be developed. The components and then the complete systems will be evaluated. A lab scale 3kW ECHP will be fabricated and evaluated. The outputs of this research will validate the theoretical modelling, significantly increase the body of knowledge of external heat engines and determine the technical feasibility of the proposed concept which aims to surpass current systems efficiencies and approach Carnot efficiency.
建筑业占世界总能耗的60%以上,而国内建筑所占的份额约为20- 40%。所消耗的能源主要用于供暖、制冷和通风,大大增加了化石燃料的消耗,从而导致二氧化碳的排放。热电联产(CHP)系统发电并利用热副产品为建筑物供暖。目前,热电联产系统的综合效率高达80%,住宅和小企业的账单可以减少20- 40%,碳排放量可以减少30%。它们还提供燃料灵活性,并且作为一个独立的系统,减少了对集中供电和配电系统的需求。目前英国热电联产实施的路线图将在2030年之前产生85- 86 TWh/a的一次能源节约,节约10- 14 Mt/a。mCHP市场目前由斯特林、ICE和ORC系统提供服务,所有这些系统都存在限制广泛mCHP安装的重大问题。由于独特的几何形状和控制系统应用于高效的爱立信循环,拟议的ECHP系统将导致显著的节能(超过40%),二氧化碳排放量减少,并将比目前的mCHP系统效率高出约30%。ECHP将使用氦气,消除对HFCs的需求。作为一个外部热力发动机,允许使用各种燃料,从天然气,汽油,柴油,沼气,生物质等,小尺寸和安静,无振动的操作允许翻新现有的建筑股票,该系统可以安装在有限的锅炉空间。如果获得成功,这一全新级别的mCHP将非常适合联合王国的新建和现有建筑物,并具有:(a)高效率;(B)低维护;(c)静音和低振动;(d)不含氢氟碳化合物;(e)紧凑设计;(f)采用简单、消费者友好的GUI界面,实现最佳系统控制;以及(g)使用外部热源,允许使用各种燃料。建议的ECHP系统预计具有以下技术优势:一种系统,该系统包括优化的压缩机和膨胀机几何形状以接近等温操作,计算机控制各个转子电动机-发电机以优化循环效率和更快的开始操作时间,燃烧室、膨胀机、同流换热器和压缩机的系统集成以获得最大效率,并结合GUI控制的优化控制算法,创建了适合理论论证和研究开发的mCHP。研究将开始与理论概念的描述有关的理想爱立信循环。将对系统组件进行建模,以包括各种几何形状。使用开发的计算机分析程序和计算流体动力学,转子设计,移植,和换热器部件设计将作为单独的组件,然后作为一个集成系统进行优化。计算机模拟模型将用于预测ECHP系统的热和电性能。该过程将通过考虑ECHP系统的不同参数和功率输出效率的影响来执行系统的优化研究。将根据需要评价参数和组件的变更。只有当系统的可行性得到证明时,才会制造组件并开发电子控制硬件/软件。将对组件和整个系统进行评估。一个实验室规模的3 kW ECHP将被制造和评估。这项研究的结果将验证理论建模,显着增加外部热机的知识体系,并确定拟议概念的技术可行性,旨在超越当前的系统效率并接近卡诺效率。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Novel rotary Ericsson cycle compressor and expander geometry for mCHP applications
适用于 mCHP 应用的新型旋转式爱立信循环压缩机和膨胀机几何结构
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Benson, C
- 通讯作者:Benson, C
Ericsson cycle heat pump and heat engine parameter optimisation
爱立信循环热泵和热机参数优化
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Benson, C
- 通讯作者:Benson, C
Rotary Geometry Ericsson Cycle Heat Engine
旋转几何爱立信循环热机
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Benson, C
- 通讯作者:Benson, C
Optimised Liquid Flooded Gas Cycle for Heat Pump and External Heat Engine Applications
适用于热泵和外热机应用的优化液体淹没气体循环
- DOI:10.5334/fce.83
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Benson C
- 通讯作者:Benson C
Parametric analysis on the performance of a revolutionary rotary Ericsson heat pump/engine
对革命性旋转式爱立信热泵/发动机性能的参数分析
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Zhang W
- 通讯作者:Zhang W
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Saffa Riffat其他文献
A novel radiative cooling system with a dissimilar material-based compound parabolic concentrator for mitigating daytime solar radiation impact
一种带有基于不同材料的复合抛物面聚光器的新型辐射冷却系统,用于减轻白天太阳辐射的影响
- DOI:
10.1016/j.renene.2025.122622 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:9.100
- 作者:
Ya Dan;Qiliang Wang;Mingke Hu;Dongliang Zhao;Gang Pei;Yuehong Su;Saffa Riffat - 通讯作者:
Saffa Riffat
A hydronic closed-loop photovoltaic cooling system designed for hot and arid regions: Performance evaluation and degradation rate/lifetime analysis
- DOI:
10.1016/j.apenergy.2024.123999 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:
- 作者:
Hazim Dirawi;Qiliang Wang;Mingke Hu;Yuehong Su;Saffa Riffat - 通讯作者:
Saffa Riffat
A comprehensive review of Pt electrocatalysts for oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells
- DOI:
10.1039/C6TA08580F - 发表时间:
2017 - 期刊:
- 影响因子:11.9
- 作者:
Sheng Sui;Xiaoying Wang;Xintong Zhou;Yuehong Su;Saffa Riffat;Chang-jun Liu - 通讯作者:
Chang-jun Liu
A study on the combination of crystallization-controllable phase change materials and solar-assisted heat pump for electricity demand shifting in space heating
- DOI:
10.1016/j.enconman.2024.119260 - 发表时间:
2025-01-15 - 期刊:
- 影响因子:
- 作者:
Cagri Kutlu;Mehmet Tahir Erdinc;Abdullah Dik;Ziwei Chen;Qinghua Lyu;Yuehong Su;Saffa Riffat - 通讯作者:
Saffa Riffat
Direct-expansion solar-assisted heat pump coupled with crystallisation-controlled supercooled PCM for shifting building electricity demand
直接膨胀式太阳能辅助热泵与结晶控制过冷相变材料相结合以转移建筑用电需求
- DOI:
10.1016/j.enbuild.2023.113660 - 发表时间:
2023-12-15 - 期刊:
- 影响因子:7.100
- 作者:
Cagri Kutlu;Yanan Zhang;Qinghua Lyu;Yuehong Su;Saffa Riffat - 通讯作者:
Saffa Riffat
Saffa Riffat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Saffa Riffat', 18)}}的其他基金
"Low cost air quality device for virus removal from indoor air environment and public transport (EP/V049100/1)"
“用于去除室内空气环境和公共交通中病毒的低成本空气质量装置(EP/V049100/1)”
- 批准号:
EP/W010917/1 - 财政年份:2021
- 资助金额:
$ 56.12万 - 项目类别:
Research Grant
A versatile PCM energy storage system for building applications (Versatile PCM)
适用于建筑应用的多功能 PCM 储能系统(Versatile PCM)
- 批准号:
EP/T02318X/1 - 财政年份:2020
- 资助金额:
$ 56.12万 - 项目类别:
Research Grant
ISCF WAVE 1 AGRI TECH_Animal WelfAir
ISCF WAVE 1 AGRI TECH_动物福利空气
- 批准号:
BB/R021511/1 - 财政年份:2018
- 资助金额:
$ 56.12万 - 项目类别:
Research Grant
A Revolutionary Rotary Ericsson Heat Pump/Engine
革命性的旋转爱立信热泵/发动机
- 批准号:
EP/P510713/1 - 财政年份:2016
- 资助金额:
$ 56.12万 - 项目类别:
Research Grant
Solar Powered Thermochemical Energy Storage
太阳能热化学储能
- 批准号:
EP/N018451/1 - 财政年份:2016
- 资助金额:
$ 56.12万 - 项目类别:
Research Grant
Micro-CHP using steam ejector/water turbine (WaterGen)
使用蒸汽喷射器/水轮机 (WaterGen) 的微型热电联产
- 批准号:
EP/N509875/1 - 财政年份:2016
- 资助金额:
$ 56.12万 - 项目类别:
Research Grant
15AGRITECHCAT3 WelChic - Welfare Enhanced Living Conditions for healthier Chickens
15AGRITECHCAT3 WelChic - 改善健康鸡的生活条件
- 批准号:
BB/N004744/1 - 财政年份:2015
- 资助金额:
$ 56.12万 - 项目类别:
Research Grant
相似国自然基金
环路热管(Loop Heat Pipe)两相传热机理的理论与实验研究
- 批准号:50676006
- 批准年份:2006
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Novel High-Efficiency Ammonia engine Technology for Heavy Duty marine applications (HEAT-HD)
适用于重型船舶应用的新型高效氨发动机技术 (HEAT-HD)
- 批准号:
10096638 - 财政年份:2024
- 资助金额:
$ 56.12万 - 项目类别:
Collaborative R&D
Solar powered heat engine to power tools including electricity generator for rural villages.
太阳能热机为农村的发电机等工具提供动力。
- 批准号:
10039002 - 财政年份:2023
- 资助金额:
$ 56.12万 - 项目类别:
Feasibility Studies
Study on three-dimensional film cooling flow heated by turbulent flow for spacecraft engine heat management
航天器发动机热管理湍流加热三维薄膜冷却流研究
- 批准号:
22H01405 - 财政年份:2022
- 资助金额:
$ 56.12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Rotating Detonation Engine Heat Flux Measurement
旋转爆震发动机热通量测量
- 批准号:
564972-2021 - 财政年份:2021
- 资助金额:
$ 56.12万 - 项目类别:
University Undergraduate Student Research Awards
SBIR Phase II: A Plasma Heat Engine for Efficient Production of Fusion Energy
SBIR 第二阶段:用于高效生产聚变能的等离子体热机
- 批准号:
2110396 - 财政年份:2021
- 资助金额:
$ 56.12万 - 项目类别:
Cooperative Agreement
External heat engine for sustainable and reliable power
外部热机提供可持续、可靠的电力
- 批准号:
516237-2017 - 财政年份:2020
- 资助金额:
$ 56.12万 - 项目类别:
Idea to Innovation
Development of Widmanstatten type heat resistant Magnesium alloys with over 400 MPa for automobile engine cylinder
汽车发动机缸体用400MPa以上魏氏组织耐热镁合金的开发
- 批准号:
19K21912 - 财政年份:2019
- 资助金额:
$ 56.12万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
SBIR Phase I: A Plasma Heat Engine for Efficient Production of Fusion Energy
SBIR 第一阶段:用于高效生产聚变能的等离子体热机
- 批准号:
1841031 - 财政年份:2019
- 资助金额:
$ 56.12万 - 项目类别:
Standard Grant
Energy conversion from low grade heat with a Stirling engine
使用斯特林发动机将低品位热能转换为能量
- 批准号:
516139-2017 - 财政年份:2017
- 资助金额:
$ 56.12万 - 项目类别:
University Undergraduate Student Research Awards