Machine Learning, Robust Optimisation, and Verification: Creating Synergistic Capabilities in Cybersecurity Research

机器学习、稳健优化和验证:在网络安全研究中创建协同能力

基本信息

  • 批准号:
    EP/N020030/1
  • 负责人:
  • 金额:
    $ 25.76万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

The need for better support to deal with the threats of cybersecurity is undisputed. Organisations are faced with an ever growing number of malware and integrated malware attack tools, attempted attacks on infrastructure and services, an increasing number of insider attacks, and advanced persistent threats for high-priced assets. Dealing with such threats requires that organisations have ICT staff that is at least familiar with cybersecurity issues and preferably has actual skills in cybersecurity regardless of the role of such staff. Likewise, management and decision makers need to be aware of cybersecurity issues and reflect these in their actions. Large organisations often have a Chief Information Security Officer (CISO) who deals with the operational and strategic issues of cybersecurity for his or her organisation. But SMEs typically cannot afford a role with such oversight on cybersecurity, which makes them especially vulnerable.The scale and diversity of cybersecurity issues that an organisation faces means it cannot possibly consider each single vulnerability of its systems against each credible or potential adversary whose presence would turn a vulnerability into an actual threat. A CISO or decision maker, though, needs to have a fairly abstract view of all this complexity where the choice of abstraction is not driven by technical aspects but by modalities such as risk, compliance, availability of service, and strategy. This view often has to take into account the cybersecurity of external or partner organisations, which is problematic as organisations are reluctant to share such sensitive information. Therefore, a CISO or decision maker needs a representation of relevant internal or external systems and services that allows him or her to make decisions of either operational or strategic nature. The uncertainty expressed in such abstractions is typically probabilistic or strict in nature. For example, a bank may have a good idea of the probability that a given teller machine has a corrupted external interface that clones inserted bank cards, based on past history, location of the machine and so forth. Strict uncertainty often relates to threats for which no (or insufficient) historical information is available to estimate probability distributions, or it is used to express the combinatorial nature of a problem, for example the different orderings in which one may schedule critical tasks.This project brings together research leaders in machine learning, robust optimisation, verification and cybersecurity to explore new modelling and analysis capabilities for needs in cybersecurity. The project will investigate new approaches for modelling and optimisation by which cybersecurity of systems, processes, and infrastructures can be more robustly assessed, monitored, and controlled in the face of stochastic and strict uncertainty. Particular attention will be paid to privacy: new forms of privacy-preserving data analytics will be created and approaches to decision support that respect privacy considerations; for corporate confidentiality, we will invent foundations that enable different organisations to model and analyse cross-organisational cybersecurity aspects whilst respecting the type of privacy inherent in organisations' confidential information by establishing appropriate information barriers.
毫无疑问,需要更好地支持应对网络安全威胁。组织面临着越来越多的恶意软件和集成的恶意软件攻击工具、对基础设施和服务的攻击企图、越来越多的内部攻击以及针对高价资产的高级持续威胁。应对这些威胁要求组织拥有至少熟悉网络安全问题的ICT工作人员,并且最好拥有网络安全方面的实际技能,无论这些工作人员的角色如何。同样,管理层和决策者需要意识到网络安全问题,并在行动中反映这些问题。大型组织通常有一个首席信息安全官(CISO),负责处理其组织的网络安全运营和战略问题。但中小企业通常承担不起这种网络安全监督的角色,这使它们特别脆弱。一个组织面临的网络安全问题的规模和多样性意味着,它不可能考虑系统的每一个漏洞,以对抗每一个可信或潜在的对手,这些对手的存在会将漏洞转化为实际威胁。然而,CISO或决策者需要对所有这些复杂性有一个相当抽象的看法,其中抽象的选择不是由技术方面驱动的,而是由风险、合规性、服务可用性和战略等模式驱动的。这种观点通常必须考虑到外部或合作伙伴组织的网络安全,这是有问题的,因为组织不愿意分享这些敏感信息。因此,CISO或决策者需要相关内部或外部系统和服务的代表,以使他或她能够做出运营或战略性质的决策。这种抽象中表达的不确定性通常是概率性的或严格的。例如,银行可以基于过去的历史、机器的位置等,很好地了解给定柜员机具有克隆插入的银行卡的损坏的外部接口的概率。严格的不确定性往往与威胁有关,历史信息(或不充分的)可用于估计概率分布,或用于表达问题的组合性质,例如,可以安排关键任务的不同顺序。该项目汇集了机器学习,鲁棒优化,核查和网络安全,探索新的建模和分析能力,以满足网络安全的需要。该项目将研究建模和优化的新方法,通过这些方法,系统,流程和基础设施的网络安全可以在面对随机和严格的不确定性时进行更有力的评估,监控和控制。将特别关注隐私:将创建新形式的隐私保护数据分析和尊重隐私考虑的决策支持方法;对于企业机密,我们将发明基础,使不同组织能够建模和分析跨组织的网络安全方面,同时通过建立适当的信息屏障来尊重组织机密信息中固有的隐私类型。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Manyopt: An Extensible Tool for Mixed, Non-Linear Optimization Through SMT Solving
Manyopt:通过 SMT 求解进行混合非线性优化的可扩展工具
  • DOI:
    10.48550/arxiv.1702.01332
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Callia D'Iddio Andrea
  • 通讯作者:
    Callia D'Iddio Andrea
Scalable Information Flow Analysis of Secure Three-Party Affine Computations
安全三方仿射计算的可扩展信息流分析
  • DOI:
    10.1109/isit.2019.8849674
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ah-Fat P
  • 通讯作者:
    Ah-Fat P
Ontology-based Reasoning about the Trustworthiness of Cyber-physical Systems
基于本体的信息物理系统可信度推理
  • DOI:
    10.1049/cp.2018.0012
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Balduccini M
  • 通讯作者:
    Balduccini M
Pseudonym Management Through Blockchain: Cost-Efficient Privacy Preservation on Intelligent Transportation Systems
  • DOI:
    10.1109/access.2019.2921605
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Bao, Shihan;Cao, Yue;Huth, Michael
  • 通讯作者:
    Huth, Michael
An in-depth case study: modelling an information barrier with Bayesian Belief Networks
深入的案例研究:使用贝叶斯信念网络对信息障碍进行建模
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Beaumont P.
  • 通讯作者:
    Beaumont P.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Huth其他文献

Zero dimensional and connected domains
  • DOI:
    10.1007/bf02573620
  • 发表时间:
    1995-12-01
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Michael Huth
  • 通讯作者:
    Michael Huth
Origin of magnetic switching cascades in tetrahedral CoFe nanostructures
四面体 CoFe 纳米结构中磁开关级联的起源
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christian Schroder;Bereket Ghebretinsae;Martin Lonsky;M. A. Mamoori;F. Porrati;Michael Huth;Jens Muller
  • 通讯作者:
    Jens Muller
Clamping effect on temperature-induced valence transition in epitaxial <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>EuPd</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>Si</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> thin films grown on
外延中温度引起的价态跃迁的钳位效应 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi
  • DOI:
    10.1103/physrevmaterials.6.115003
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    S. Kölsch;A. Schuck;Michael Huth;O. Fedchenko;D. Vasilyev;S. Chernov;Olena Tkach;H. Elmers;G. Schönhense;Christoph Schlüter;T. Peixoto;A. Gloskowski;C. Krellner
  • 通讯作者:
    C. Krellner
Artificial Intelligence and the Internet of Things in Industry 4.0
EXPTIME-complete Decision Problems for Modal and Mixed Specifications 1
模态和混合规范的 EXPTIME 完整决策问题 1
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Adam Antonik;Michael Huth;Kim G. Larsen;Ulrik Nyman
  • 通讯作者:
    Ulrik Nyman

Michael Huth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Huth', 18)}}的其他基金

Complete and Efficient Checks for Branching-Time Abstractions
完整有效的分支时间抽象检查
  • 批准号:
    EP/E028985/1
  • 财政年份:
    2007
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Research Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER: IMPRESS-U: Exploratory Research in Robust Machine Learning for Object Detection and Classification
EAGER:IMPRESS-U:用于对象检测和分类的鲁棒机器学习的探索性研究
  • 批准号:
    2415299
  • 财政年份:
    2024
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Standard Grant
22-BBSRC/NSF-BIO - Interpretable & Noise-robust Machine Learning for Neurophysiology
22-BBSRC/NSF-BIO - 可解释
  • 批准号:
    BB/Y008758/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Research Grant
DMS/NIGMS 1: Multilevel stochastic orthogonal subspace transformations for robust machine learning with applications to biomedical data and Alzheimer's disease subtyping
DMS/NIGMS 1:多级随机正交子空间变换,用于稳健的机器学习,应用于生物医学数据和阿尔茨海默病亚型分析
  • 批准号:
    2347698
  • 财政年份:
    2024
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Continuing Grant
Robust Defences against Adversarial Machine Learning for UAV Systems
针对无人机系统对抗性机器学习的稳健防御
  • 批准号:
    LP230100083
  • 财政年份:
    2024
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Linkage Projects
UKRI/BBSRC-NSF/BIO: Interpretable and Noise-Robust Machine Learning for Neurophysiology
UKRI/BBSRC-NSF/BIO:用于神经生理学的可解释且抗噪声的机器学习
  • 批准号:
    2321840
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Continuing Grant
CAREER: Interpretable and Robust Machine Learning Models: Analysis and Algorithms
职业:可解释且稳健的机器学习模型:分析和算法
  • 批准号:
    2239787
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Continuing Grant
CDS&E: Robust Symmetry-Preserving Machine Learning: Theory and Application
CDS
  • 批准号:
    2244976
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Small: Robust Machine Learning under Sparse Adversarial Attacks
协作研究:CIF:小型:稀疏对抗攻击下的鲁棒机器学习
  • 批准号:
    2236484
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Standard Grant
A machine learning framework for trustworthy bio-medical risk factor identification – robust, explainable, and human-centred detection of endo- and phenotypes in lung cancer
用于识别值得信赖的生物医学风险因素的机器学习框架——对肺癌的内型和表型进行稳健、可解释且以人为本的检测
  • 批准号:
    10068410
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Collaborative R&D
Collaborative Research: CIF: Small: Robust Machine Learning under Sparse Adversarial Attacks
协作研究:CIF:小型:稀疏对抗攻击下的鲁棒机器学习
  • 批准号:
    2236483
  • 财政年份:
    2023
  • 资助金额:
    $ 25.76万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了