Nodes from the Underground: Causal and Probabilistic Approaches for Complex Transportation Networks

地下节点:复杂交通网络的因果和概率方法

基本信息

  • 批准号:
    EP/N020723/1
  • 负责人:
  • 金额:
    $ 50.32万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

An efficient transportation system is vital to the economic and social well-being of large cities. The transport demand implied by economic growth, however, requires transport networks to become more and more complex, making their management difficult. Fortunately, modern systems such as the London Underground generate vast amounts of data that can be analysed to better understand passenger behaviour and needs. Besides understanding the typical daily patterns that we can observe on a regular basis, Data Science methods allows us to look into in the less usual events such as unplanned disruptions that are still important to any user, and to also model individualised behaviour instead of only aggregates. In a large system such as the London Underground, signal failures and disruptive events eventually take place, requiring passengers to change plans in a variety of ways. This research provides advanced statistical modelling and machine learning approaches to learn from past events to examine how passengers adapt themselves when a disruption occurs. When a disruption takes place, the model will provide information of likely changes, such as increased number of passengers leaving a station because they could not reach their destination. These models are important for transport authorities to understand the resilience of the system, different combinations of location and time of a disruption, and unusual responses from passengers that may motivate different communication strategies to inform users of better travel adjustments. This research also opens up conceptual ideas to be exploited in the future using new technologies to monitor and adaptively respond to passenger needs in a more optimised and time-effective way.
高效的交通系统对于大城市的经济和社会福祉至关重要。然而,经济增长带来的交通需求要求交通网络变得越来越复杂,管理难度加大。幸运的是,伦敦地铁等现代系统会生成大量数据,可以对这些数据进行分析,以更好地了解乘客的行为和需求。除了了解我们可以定期观察到的典型日常模式之外,数据科学方法还允许我们研究不太常见的事件,例如对任何用户仍然很重要的计划外中断,并且还可以对个性化行为进行建模,而不仅仅是聚合。在伦敦地铁这样的大型系统中,信号故障和破坏性事件最终会发生,要求乘客以各种方式改变计划。这项研究提供了先进的统计模型和机器学习方法,可以从过去的事件中学习,以检查乘客在发生中断时如何适应。当发生中断时,该模型将提供可能发生变化的信息,例如由于无法到达目的地而离开车站的乘客数量增加。这些模型对于交通当局了解系统的弹性、中断位置和时间的不同组合以及乘客的异常反应非常重要,这些反应可能会激发不同的沟通策略,以通知用户更好的旅行调整。这项研究还开辟了未来可利用的概念思路,利用新技术以更优化、更省时的方式监控和自适应地响应乘客需求。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inferring urban polycentricity from the variability in human mobility patterns.
从人类流动模式的可变性推断城市多中心性。
  • DOI:
    10.1038/s41598-023-33003-7
  • 发表时间:
    2023-04-07
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Cabrera-Arnau, Carmen;Zhong, Chen;Batty, Michael;Silva, Ricardo;Kang, Soong Moon
  • 通讯作者:
    Kang, Soong Moon
Counterfactual Distribution Regression for Structured Inference
结构化推理的反事实分布回归
  • DOI:
    10.48550/arxiv.1908.07193
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Colombo N
  • 通讯作者:
    Colombo N
Tomography of the London Underground: a Scalable Model for Origin-Destination Data
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nicolò Colombo;Ricardo Silva;Soong Moon Kang
  • 通讯作者:
    Nicolò Colombo;Ricardo Silva;Soong Moon Kang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ricardo Silva其他文献

First record of Lepas spp. (Cirripedia: Thoracica: Lepadiformes) attached to pumice from the Cordón-Caulle eruption along the central-South Chilean coast
Lepas spp.(Cirripedia:Thoracica:Lepadiformes)的第一个记录附着在智利中南部海岸的 Cordón-Caulle 火山喷发的浮石上
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Vázquez;E. Jaramillo;G. Morales;Ricardo Silva
  • 通讯作者:
    Ricardo Silva
Resilience of an aquatic macrophyte to an anthropogenically induced environmental stressor in a Ramsar wetland of southern Chile
智利南部拉姆萨尔湿地水生植物对人为环境压力的恢复力
  • DOI:
    10.1007/s13280-018-1071-6
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    E. Jaramillo;C. Duarte;Fabio A. Labra;N. Lagos;B. Peruzzo;Ricardo Silva;Carlos Velásquez;Mario G. Manzano;D. Melnick
  • 通讯作者:
    D. Melnick
Opportunities for passive cooling to mitigate the impact of climate change in Switzerland
被动冷却减轻瑞士气候变化影响的机会
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Ricardo Silva;S. Eggimann;Leonie Fierz;M. Fiorentini;K. Orehounig;L. Baldini
  • 通讯作者:
    L. Baldini
Cloning and expression of the porA gene of the Neisseria meningitidis strain B : 4 : P1.15 in Escherichia coli. Preliminary characterization of the recombinant polypeptide
脑膜炎奈瑟菌菌株B:4:P1.15的porA基因在大肠杆菌中的克隆和表达。
  • DOI:
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Guillén;A. Álvarez;O. Niebla;Ricardo Silva;S. González;A. Musacchio;Alejandro M. Martin;M. Delgado;L. Herrera
  • 通讯作者:
    L. Herrera
Bayesian Inference for Gaussian Mixed Graph Models
高斯混合图模型的贝叶斯推理

Ricardo Silva的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ricardo Silva', 18)}}的其他基金

The Causal Continuum - Transforming Modelling and Computation in Causal Inference
因果连续体 - 转变因果推理中的建模和计算
  • 批准号:
    EP/W024330/1
  • 财政年份:
    2022
  • 资助金额:
    $ 50.32万
  • 项目类别:
    Fellowship
Learning Highly Structured Sparse Latent Variable Models
学习高度结构化的稀疏潜变量模型
  • 批准号:
    EP/J013293/1
  • 财政年份:
    2012
  • 资助金额:
    $ 50.32万
  • 项目类别:
    Research Grant

相似海外基金

RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
  • 批准号:
    2327317
  • 财政年份:
    2024
  • 资助金额:
    $ 50.32万
  • 项目类别:
    Standard Grant
NeTS: Small: NSF-DST: Modernizing Underground Mining Operations with Millimeter-Wave Imaging and Networking
NeTS:小型:NSF-DST:利用毫米波成像和网络实现地下采矿作业现代化
  • 批准号:
    2342833
  • 财政年份:
    2024
  • 资助金额:
    $ 50.32万
  • 项目类别:
    Standard Grant
CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment
职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施
  • 批准号:
    2340882
  • 财政年份:
    2024
  • 资助金额:
    $ 50.32万
  • 项目类别:
    Continuing Grant
Fluid dynamics of underground hydrogen storage
地下储氢的流体动力学
  • 批准号:
    DE240100755
  • 财政年份:
    2024
  • 资助金额:
    $ 50.32万
  • 项目类别:
    Discovery Early Career Researcher Award
Preparation for the Deep Underground Neutrino Experiment and Measurement of Pion-Argon Cross-sections
深部地下中微子实验准备及π-氩截面测量
  • 批准号:
    2902765
  • 财政年份:
    2024
  • 资助金额:
    $ 50.32万
  • 项目类别:
    Studentship
CAS-Climate: Bubble generation and ripening in underground hydrogen storage
CAS-气候:地下储氢中气泡的产生和成熟
  • 批准号:
    2348723
  • 财政年份:
    2024
  • 资助金额:
    $ 50.32万
  • 项目类别:
    Standard Grant
Geothermal heat recovery and energy storage from underground mines
地下矿山的地热热回收和能源储存
  • 批准号:
    DE240100204
  • 财政年份:
    2024
  • 资助金额:
    $ 50.32万
  • 项目类别:
    Discovery Early Career Researcher Award
Piloting Underground Storage of Heat In geoThermal reservoirs (PUSH IT)
试点地热库地下储热 (PUSH IT)
  • 批准号:
    10047610
  • 财政年份:
    2023
  • 资助金额:
    $ 50.32万
  • 项目类别:
    EU-Funded
Quantum Sensing on the London Underground
伦敦地铁的量子传感
  • 批准号:
    EP/Y005287/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50.32万
  • 项目类别:
    Research Grant
Towards a carbon-free future: Using underground storage of hydrogen in porous rocks to enable grid-scale energy storage
迈向无碳未来:利用地下多孔岩石中的氢储存来实现电网规模的能源储存
  • 批准号:
    2894612
  • 财政年份:
    2023
  • 资助金额:
    $ 50.32万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了