Learning Highly Structured Sparse Latent Variable Models

学习高度结构化的稀疏潜变量模型

基本信息

  • 批准号:
    EP/J013293/1
  • 负责人:
  • 金额:
    $ 12.68万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

Technological advances have brought the ability of collecting and analysing patterns in high-dimensional databases. One particular type of analysis concerns problems where the recorded variables indirectly measure hidden factors that explain away observed associations. For instance, the recent National NHS Staff Survey of 2009, taken by over one hundred thousand staff members, contained several questions on job satisfaction. It is only natural that the patterns of observed answers are the result of some common hidden factors that remain unrecorded. In particular, such answers could arguably be grouped by factors such as perceptions of the quality of work practice, support of colleagues and so on, that are only indirectly measured.In practice, when making sense out of a high-dimensional data source, it is useful to reduce the observations to a small number of common factors. Since records are affected by sources of variability that are unrelated to the actual factors (think of someone having a bad day, or even typing wrong information by mistake), removing such artifacts is also part of the statistical problem. A model that estimates such transformations is said to perform "dimensionality reduction" and "smoothing".There are a variety of methods to accomplish such tasks. At one end of the spectrum, there are models that assume the data match some very simple patterns such as bell curves and pre-determined factors. Others are very powerful, allowing for flexible patterns and even an infinite number of factors that are inferred from data under some very mild assumptions. The proposed work tries to bridge these extremes: the shortcomings of the very flexible models are subtle but important. In particular, they can be very sensitive to changes in the data - meaning some very different conclusions about the hidden factors might be achieved if a slightly different set of observations is provided. Moreover there are computational concerns: calculating the desired estimates usually requires an iterative process, a process that needs some initial guess about these estimates. So, even for a fixed dataset, results can vary considerably if such an initial guess is not carefully chosen. Our motivation is that if one does have these concerns, one might as well take the trouble of incorporating domain knowledge about the domain. The upshot: we do not aim to be general, and instead target applications where some reasonable domain knowledge exists. In particular, we focus on problems where the hidden targets of interest are pre-specified, but infinitely many others might exist. While we map our data to a fixed space of hidden variables, we provide an approach that is robust to the presence of an unbounded number of other, implicit, common factors. The proposed models are adaptive: they account for possible extra variability between the given hidden factors that would be missed by the simpler models. At the same time, they are designed to be less sensitive to initial conditions while being less sensitive to small changes in the datasets.
技术进步带来了收集和分析高维数据库中模式的能力。一种特殊类型的分析涉及的问题是,记录的变量间接测量隐藏的因素,解释了观察到的关联。例如,最近的2009年全国国民保健服务工作人员调查,超过10万名工作人员,载有几个问题的工作满意度。观察到的答案模式是一些未被记录的常见隐藏因素的结果,这是很自然的。特别是,这些答案可以通过对工作实践质量的看法、同事的支持等因素进行分组,这些因素只能间接测量。在实践中,当从高维数据源中获得意义时,将观察结果减少到少数共同因素是有用的。由于记录受到与实际因素无关的可变性来源的影响(想想某人有一个糟糕的一天,甚至错误地输入错误的信息),因此删除这些工件也是统计问题的一部分。估计这种转换的模型被称为“降维”和“平滑”。有多种方法可以完成这些任务。在光谱的一端,有一些模型假设数据与一些非常简单的模式相匹配,例如钟形曲线和预定因素。另一些则非常强大,允许灵活的模式,甚至在一些非常温和的假设下从数据中推断出无限数量的因素。拟议的工作试图弥合这些极端:非常灵活的模型的缺点是微妙的,但重要的。特别是,它们可能对数据的变化非常敏感-这意味着如果提供稍微不同的一组观察结果,可能会得出一些关于隐藏因素的非常不同的结论。此外,还有计算方面的问题:计算所需的估计值通常需要一个迭代过程,这个过程需要对这些估计值进行一些初始猜测。因此,即使对于一个固定的数据集,如果不仔细选择这样的初始猜测,结果也会有很大的不同。我们的动机是,如果一个人确实有这些顾虑,那么他也可以不嫌麻烦地整合关于该领域的领域知识。结论:我们的目标不是通用的,而是针对存在一些合理领域知识的应用程序。特别是,我们专注于问题的隐藏目标的兴趣是预先指定的,但无限多的其他可能存在。当我们将数据映射到一个固定的隐变量空间时,我们提供了一种方法,该方法对存在无限数量的其他隐式公共因素具有鲁棒性。所提出的模型是自适应的:它们考虑到了给定隐藏因素之间可能存在的额外变异性,而这些因素可能会被更简单的模型遗漏。同时,它们被设计成对初始条件不太敏感,同时对数据集中的小变化不太敏感。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bayesian inference via projections
  • DOI:
    10.1007/s11222-015-9557-6
  • 发表时间:
    2015-06
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Ricardo Silva;Freddie Kalaitzis
  • 通讯作者:
    Ricardo Silva;Freddie Kalaitzis
Interdisciplinary Bayesian Statistics - EBEB 2014
跨学科贝叶斯统计 - EBEB 2014
  • DOI:
    10.1007/978-3-319-12454-4_7
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Silva R
  • 通讯作者:
    Silva R
Flexible sampling of discrete data correlations without the marginal distributions
  • DOI:
  • 发表时间:
    2013-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Freddie Kalaitzis;Ricardo Silva
  • 通讯作者:
    Freddie Kalaitzis;Ricardo Silva
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ricardo Silva其他文献

First record of Lepas spp. (Cirripedia: Thoracica: Lepadiformes) attached to pumice from the Cordón-Caulle eruption along the central-South Chilean coast
Lepas spp.(Cirripedia:Thoracica:Lepadiformes)的第一个记录附着在智利中南部海岸的 Cordón-Caulle 火山喷发的浮石上
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Vázquez;E. Jaramillo;G. Morales;Ricardo Silva
  • 通讯作者:
    Ricardo Silva
Resilience of an aquatic macrophyte to an anthropogenically induced environmental stressor in a Ramsar wetland of southern Chile
智利南部拉姆萨尔湿地水生植物对人为环境压力的恢复力
  • DOI:
    10.1007/s13280-018-1071-6
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    E. Jaramillo;C. Duarte;Fabio A. Labra;N. Lagos;B. Peruzzo;Ricardo Silva;Carlos Velásquez;Mario G. Manzano;D. Melnick
  • 通讯作者:
    D. Melnick
Opportunities for passive cooling to mitigate the impact of climate change in Switzerland
被动冷却减轻瑞士气候变化影响的机会
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Ricardo Silva;S. Eggimann;Leonie Fierz;M. Fiorentini;K. Orehounig;L. Baldini
  • 通讯作者:
    L. Baldini
Cloning and expression of the porA gene of the Neisseria meningitidis strain B : 4 : P1.15 in Escherichia coli. Preliminary characterization of the recombinant polypeptide
脑膜炎奈瑟菌菌株B:4:P1.15的porA基因在大肠杆菌中的克隆和表达。
  • DOI:
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Guillén;A. Álvarez;O. Niebla;Ricardo Silva;S. González;A. Musacchio;Alejandro M. Martin;M. Delgado;L. Herrera
  • 通讯作者:
    L. Herrera
Bayesian Inference for Gaussian Mixed Graph Models
高斯混合图模型的贝叶斯推理

Ricardo Silva的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ricardo Silva', 18)}}的其他基金

The Causal Continuum - Transforming Modelling and Computation in Causal Inference
因果连续体 - 转变因果推理中的建模和计算
  • 批准号:
    EP/W024330/1
  • 财政年份:
    2022
  • 资助金额:
    $ 12.68万
  • 项目类别:
    Fellowship
Nodes from the Underground: Causal and Probabilistic Approaches for Complex Transportation Networks
地下节点:复杂交通网络的因果和概率方法
  • 批准号:
    EP/N020723/1
  • 财政年份:
    2016
  • 资助金额:
    $ 12.68万
  • 项目类别:
    Research Grant

相似海外基金

Multispecies aggregates from human dental plaque nucleate highly diverse spatially structured oral biofilms on saliva coated surfaces
来自人类牙菌斑的多物种聚集体在唾液涂层表面上形成高度多样化的空间结构口腔生物膜
  • 批准号:
    10679723
  • 财政年份:
    2023
  • 资助金额:
    $ 12.68万
  • 项目类别:
Establishment of Highly Ordered Structured Growth Process from Gas Phase Using High-speed Chemical Vapor Deposition and In-situ Observation
利用高速化学气相沉积和原位观察建立气相高度有序结构化生长过程
  • 批准号:
    21J11881
  • 财政年份:
    2021
  • 资助金额:
    $ 12.68万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Highly structured optical materials based on protein containers and plasmonic nanoparticles for the manipulation of light at the nanoscale
基于蛋白质容器和等离子体纳米粒子的高度结构化光学材料,用于在纳米尺度上操纵光
  • 批准号:
    401323995
  • 财政年份:
    2018
  • 资助金额:
    $ 12.68万
  • 项目类别:
    Research Grants
Novel development of the highly-functional super lightweight bcc-structured Mg-Li alloy via crystallographic orientation control
通过晶体取向控制新型开发高功能超轻质bcc结构镁锂合金
  • 批准号:
    18H01736
  • 财政年份:
    2018
  • 资助金额:
    $ 12.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Illuminating organelle dynamics through highly scattering bone: intravital wavefront optimized structured illumination imaging
通过高度散射的骨骼照亮细胞器动力学:活体波前优化的结构照明成像
  • 批准号:
    1706916
  • 财政年份:
    2017
  • 资助金额:
    $ 12.68万
  • 项目类别:
    Standard Grant
Statistical Analysis of Complex, Highly-structured Functional Data
复杂、高度结构化的功能数据的统计分析
  • 批准号:
    1611901
  • 财政年份:
    2016
  • 资助金额:
    $ 12.68万
  • 项目类别:
    Standard Grant
Ultrasonic Study of Complex Quantum Degree of Freedom in Highly Symmetrical Cage Structured Compounds(Fostering Joint International Research)
高对称性笼状结构化合物中复量子自由度的超声研究(促进国际联合研究)
  • 批准号:
    15KK0146
  • 财政年份:
    2016
  • 资助金额:
    $ 12.68万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research)
Respondent-driven sampling for highly structured populations
针对高度结构化人群的受访者驱动抽样
  • 批准号:
    8469255
  • 财政年份:
    2013
  • 资助金额:
    $ 12.68万
  • 项目类别:
Respondent-driven sampling for highly structured populations
针对高度结构化人群的受访者驱动抽样
  • 批准号:
    8639437
  • 财政年份:
    2013
  • 资助金额:
    $ 12.68万
  • 项目类别:
Exploring the Role of Coarray Fortran for Highly Parallel Structured Adaptive Mesh Refinement Calculations
探索 Coarray Fortran 在高度并行结构化自适应网格细化计算中的作用
  • 批准号:
    1307369
  • 财政年份:
    2013
  • 资助金额:
    $ 12.68万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了