A compositional approach to game-theoretic economic modelling
博弈论经济建模的组合方法
基本信息
- 批准号:EP/N021282/1
- 负责人:
- 金额:$ 33.04万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Game theory is the mathematical study of strategic interaction and decision-making under uncertainty. It is arguably the central tool of microeconomics, and is also widely used in evolutionary biology, cybersecurity and military strategy, among other application areas. Compositionality, one of the most fundamental ideas of software science, is the principle that the behaviour of a system should be understandable in terms of the behaviour of its components. Compositionality allows large, complex systems to be designed, implemented, analysed and tested in a modular way, and allows modules to be reused in different contexts. Without this, modern software engineering would be impossible.Game models, however, are not compositional, and generally must be produced in their entirety rather than by combining standard components. As a result, game-theoretic modelling is a slow process, as small variations in the domain to be modelled can lead to large changes needed in the model. In particular this means that game-theoretic models are currently not well-suited to software implementation.This project concerns a new approach to game theory which is compositional, and therefore promises the possibility of software support for economists and other users of game theory on a scale that is currently impossible. Specifically, it should be possible to specify, simulate, solve and more generally reason about games in a way that allows the reuse of existing work. For example a typical economic system has a hierarchical structure, from agents to households to markets to economies, and it should be possible to gradually build models of each level in a way that directly uses existing models of the lower levels.The mathematical techniques and concepts underlying this approach mostly come from proof theory (part of mathematical logic) and the theory of programming languages (part of theoretical computer science). Fortunately there is no need for users to learn this sophisticated and (to them) unfamiliar theory, because it is also possible to hide the mathematics behind an intuitive graphical language known as string diagrams, which have been widely studied recently due to applications in quantum information theory, linguistics and abstract algebra. This means that game theoretic software can be graphical and intuitive, but still have a strong theoretical underpinning.The purpose of this project is to develop the mathematical theory needed for these economic applications, in a way that exploits the close relationship between theory and applications in this area, while using a worked example (based on modelling of smart energy grids) to provide a continual test of the practical benefits of compositionality.A large part of the theoretical part of this project will involve extending the theory of selection functions with various known concepts in game theory, such as repeated games, imperfect information and different solution concepts, which can be found in any standard text on game theory. This will largely consist of generalising existing theory to the new framework.
博弈论是对不确定性下的战略互动和决策的数学研究。它可以说是微观经济学的核心工具,也被广泛用于进化生物学,网络安全和军事战略等应用领域。组合性是软件科学最基本的思想之一,它是一个原则,即系统的行为应该根据其组件的行为来理解。组合性允许以模块化的方式设计、实现、分析和测试大型复杂系统,并允许在不同的上下文中重用模块。没有这些,现代软件工程将是不可能的。然而,游戏模型不是组合的,通常必须完整地生成,而不是通过组合标准组件。因此,博弈论建模是一个缓慢的过程,因为要建模的领域中的小变化可能导致模型中需要的大变化。特别是这意味着,博弈论模型目前不适合软件implementation.This项目涉及一种新的方法,博弈论是组合,因此承诺的可能性,软件支持经济学家和其他用户的博弈论的规模,目前是不可能的。具体来说,它应该可以指定,模拟,解决和更普遍的原因,游戏的方式,允许重用现有的工作。例如,一个典型的经济系统有一个等级结构,从代理人到家庭到市场到经济体,这种方法的数学技术和概念主要来自于证明理论(数理逻辑的一部分)和编程语言理论(理论计算机科学的一部分)。幸运的是,用户不需要学习这个复杂的和(对他们来说)不熟悉的理论,因为它也可以隐藏数学背后的直观图形语言称为弦图,最近由于量子信息理论,语言学和抽象代数的应用而被广泛研究。这意味着博弈论软件可以是图形和直观的,但仍然有一个强大的理论基础。这个项目的目的是开发这些经济应用所需的数学理论,在某种程度上,利用理论和应用之间的密切关系,在这个领域,当使用一个工作的例子时,(基于智能能源网模型)提供一个连续的测试的实际利益的组合。一个大部分的理论部分,这个项目将涉及扩展理论的选择功能与各种已知的概念在博弈论中,如重复博弈,不完全信息和不同的解决方案的概念,这可以在任何标准的文本博弈论。这将主要包括将现有理论推广到新的框架。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Backward Induction for Repeated Games
重复博弈的后向归纳
- DOI:10.4204/eptcs.275.5
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Hedges J
- 通讯作者:Hedges J
Towards Functorial Language-Games
走向函式语言游戏
- DOI:10.4204/eptcs.283.7
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Hedges J
- 通讯作者:Hedges J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julian Hedges其他文献
A generalization of Nash's theorem with higher-order functionals
纳什定理与高阶泛函的推广
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Julian Hedges - 通讯作者:
Julian Hedges
Julian Hedges的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
量化 domain 的拓扑性质
- 批准号:11771310
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
基于Riemann-Hilbert方法的相关问题研究
- 批准号:11026205
- 批准年份:2010
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
- 批准号:81070152
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:面上项目
MBR中溶解性微生物产物膜污染界面微距作用机制定量解析
- 批准号:50908133
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
新型低碳马氏体高强钢在不同低温下解理断裂物理模型的研究
- 批准号:50671047
- 批准年份:2006
- 资助金额:30.0 万元
- 项目类别:面上项目
基于生态位理论与方法优化沙区人工植物群落的研究
- 批准号:30470298
- 批准年份:2004
- 资助金额:15.0 万元
- 项目类别:面上项目
相似海外基金
A Holistic Approach to Improve Learning and Motivation in Introductory Programming with Automated Grading, Web-based Team Support, and Game Development
通过自动评分、基于网络的团队支持和游戏开发提高入门编程学习和动机的整体方法
- 批准号:
2345097 - 财政年份:2024
- 资助金额:
$ 33.04万 - 项目类别:
Standard Grant
Proximal and ultimate mechanisms driving animal aggressive contests: a gene expression and game theory approach
驱动动物攻击性竞赛的近端和终极机制:基因表达和博弈论方法
- 批准号:
23K14229 - 财政年份:2023
- 资助金额:
$ 33.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
SaTC: CORE: Small: Beat Modern Virtualization Obfuscation at Their Own Game: A Bottom-Up Deobfuscation Approach
SaTC:核心:小型:在自己的游戏中击败现代虚拟化混淆:自下而上的反混淆方法
- 批准号:
2211905 - 财政年份:2023
- 资助金额:
$ 33.04万 - 项目类别:
Standard Grant
Extending experimental evolutionary game theory in cancer in vivo to enable clinical translation: integrating spatio-temporal dynamics using mathematical modeling
扩展癌症体内实验进化博弈论以实现临床转化:使用数学建模整合时空动力学
- 批准号:
10662098 - 财政年份:2023
- 资助金额:
$ 33.04万 - 项目类别:
Development of a serious game to measure physician implementation of trauma triage guidelines
开发一款严肃的游戏来衡量医生对创伤分类指南的执行情况
- 批准号:
10646651 - 财政年份:2023
- 资助金额:
$ 33.04万 - 项目类别:
A sensor-controlled digital game-based approach to improve self-care behaviors among adults diagnosed with hypertension in a Native American community
一种基于传感器控制的数字游戏方法,用于改善美洲原住民社区中被诊断患有高血压的成年人的自我保健行为
- 批准号:
10406061 - 财政年份:2022
- 资助金额:
$ 33.04万 - 项目类别:
Mystery of the Crooked Cell 2.0: CityLab's Next Generation Socioscientific Approach to Gene Editing
弯曲细胞 2.0 之谜:CityLab 的下一代基因编辑社会科学方法
- 批准号:
10448823 - 财政年份:2022
- 资助金额:
$ 33.04万 - 项目类别:
On the quality and properties of collective decision-making; an approach from information game theory
论集体决策的质量和属性;
- 批准号:
22K01407 - 财政年份:2022
- 资助金额:
$ 33.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: CISE-MSI: RCBP-RF: CNS: Truthful and Optimal Data Preservation in Base Station-less Sensor Networks: An Integrated Game Theory and Network Flow Approach
合作研究:CISE-MSI:RCBP-RF:CNS:无基站传感器网络中真实且最优的数据保存:集成博弈论和网络流方法
- 批准号:
2131309 - 财政年份:2022
- 资助金额:
$ 33.04万 - 项目类别:
Standard Grant
Investigating influences of habitual violent game experiences on emotional cognition and presence through a psychophysiological approach.
通过心理生理学方法研究习惯性暴力游戏体验对情绪认知和存在的影响。
- 批准号:
22K03208 - 财政年份:2022
- 资助金额:
$ 33.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)