In-situ studies of the growth of two-dimensional covalent organic frameworks
二维共价有机框架生长的原位研究
基本信息
- 批准号:EP/N021789/1
- 负责人:
- 金额:$ 12.73万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The development of new materials plays a vital role in the evolution of existing technology. New materials often display unique properties that suggest new ways of solving important societal problems such as making better catalysts or the development of new sensors for medical or environmental applications. The development of graphene is a prominent example of a new material that redefined existing applications and in many cases suggested entirely new ones. A proven approach to developing new materials is to combine different structures to form composite materials where the properties of multiple materials can be combined in a single structure. In addition to simply combining the properties of individual materials, composite materials often lead to entirely new properties that surpass those of either of the components.To discover new composite materials we need to understand how they form and utilise this knowledge to grow complex materials that can be designed to have desirable properties. This project aims to combine two promising types of materials into new composite structures: porous graphene materials and two-dimensional covalent organic frameworks (2D-COFs). 2D-COFs are formed by linking separate molecular building blocks together with covalent bonds to create extended two-dimensional molecular structures. The 2D-COFs studied in this project are surface supported porphyrin 2D-COFs. This means the growth of the 2D-COF takes places on an underlying surface and the main molecular components are porphyrin molecules. Porphyrins are highly versatile and widely used organic molecular components. The potential of porphyrins to provide chemical functionality is demonstrated by their important roles in biological systems, photosynthesis and binding oxygen in red blood cells and technologically in catalysts and sensors.I will use an experimental tool called a quartz crystal microbalance (QCM) to track the growth of 2D-COFs on porous graphene materials in real-time. Porphyrin 2D-COFs will be grown using a condensation reaction to form the covalent links between molecules. These condensation reactions release water molecules and the mass change associated with this can be detected by QCM. These in-situ measurements will allow us to gain insights into how environmental conditions, such as temperature pressure and humidity, influence the growth of 2D-COF structures. Using these insights I will find optimal conditions for 2D-COF growth and the project will investigate the growth on high surface area graphene materials such as graphene foams and graphene hydrogels.A major obstacle to the application of 2D-COFs is their lack of stability in harsh conditions. To produce ordered 2D-COFs it is necessary to use covalent bonds that link molecules together reversibly. If bonds are non-reversible defects in the growing 2D-COF become trapped and disordered structures are produced. However, a limitation to using reversible bond formation processes is that while the resulting 2D-COFs are ordered they are also susceptible to degradation, making them unsuitable for applications that require stability in harsh environments. This project aims to develop post-growth chemical treatments that increase the stability of pre-formed porphyrin 2D-COFs while maintaining their ordered structure. Finally, an approach to adding functionality to pre-formed 2D-COFs by using custom designed molecular building blocks will also be investigated. These building blocks will have chemical groups which are inactive during 2D-COF growth but subsequently can be used to attach other functional components, such as dye molecules or nanoparticles, to the preformed 2D-COFs. This modular approach use 2D-COFs as templates for producing complex and functional materials.This project will lead to a new understanding in the growth of functional organic nanostructures and a new set of composite materials with potential in a wide range of applications.
新材料的开发在现有技术的发展中起着至关重要的作用。新材料通常表现出独特的性能,为解决重要的社会问题提供了新的方法,例如制造更好的催化剂或开发用于医疗或环境应用的新传感器。石墨烯的开发是一种新材料的一个突出例子,它重新定义了现有的应用,并在许多情况下提出了全新的应用。开发新材料的一种行之有效的方法是将不同的结构组合成复合材料,在这种复合材料中,多种材料的特性可以结合在一个结构中。除了简单地结合单个材料的性能外,复合材料通常会带来全新的性能,超过其中任何一种组件的性能。为了发现新的复合材料,我们需要了解它们是如何形成的,并利用这些知识来生长复杂的材料,这些材料可以被设计成具有理想的性能。该项目旨在将两种有前途的材料结合成新的复合结构:多孔石墨烯材料和二维共价有机框架(2D-COFs)。2D-COFs是通过将分离的分子构建块与共价键连接在一起形成扩展的二维分子结构。本课题研究的2D-COFs为表面负载型卟啉2D-COFs。这意味着2D-COF的生长发生在下面的表面上,主要的分子成分是卟啉分子。卟啉是一种用途广泛的有机分子成分。卟啉在生物系统、光合作用和红细胞结合氧中的重要作用以及在催化剂和传感器中的技术作用证明了卟啉提供化学功能的潜力。我将使用一种叫做石英晶体微天平(QCM)的实验工具来实时跟踪多孔石墨烯材料上2D-COFs的生长。卟啉2D-COFs将通过缩合反应在分子之间形成共价键来生长。这些缩合反应释放水分子,与此相关的质量变化可以通过QCM检测到。这些原位测量将使我们能够深入了解环境条件(如温度、压力和湿度)如何影响2D-COF结构的生长。利用这些见解,我将找到2D-COF生长的最佳条件,该项目将研究高表面积石墨烯材料(如石墨烯泡沫和石墨烯水凝胶)的生长。2D-COFs应用的一个主要障碍是它们在恶劣条件下缺乏稳定性。为了产生有序的2D-COFs,必须使用共价键将分子可逆地连接在一起。如果键是不可逆的,则生长中的2D-COF中的缺陷会被捕获并产生无序结构。然而,使用可逆键形成过程的一个限制是,虽然得到的2D-COFs是有序的,但它们也容易降解,因此不适合在恶劣环境中需要稳定性的应用。该项目旨在开发生长后的化学处理,以提高预形成的卟啉2D-COFs的稳定性,同时保持其有序结构。最后,还将研究一种通过使用定制设计的分子构建块向预成型2D-COFs添加功能的方法。这些构建块将具有在2D-COF生长过程中不活跃的化学基团,但随后可用于将其他功能成分(如染料分子或纳米颗粒)附着到预成型的2D-COF上。这种模块化方法使用2D-COFs作为模板来生产复杂的功能材料。该项目将对功能性有机纳米结构的生长和一系列具有广泛应用潜力的新型复合材料产生新的认识。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Blunt其他文献
Matthew Blunt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
脂滴聚集型小胶质细胞介导的髓鞘病变促进小鼠抑郁样行为及其机制研究
- 批准号:82371528
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
星形胶质细胞介导的髓鞘吞噬参与慢性脑低灌注白质损伤的机制研究
- 批准号:82371307
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
In-situ X-ray Scattering Studies of Oxide Epitaxial Growth Kinetics and Dynamics
氧化物外延生长动力学和动力学的原位 X 射线散射研究
- 批准号:
2336506 - 财政年份:2024
- 资助金额:
$ 12.73万 - 项目类别:
Continuing Grant
Evaluating the efficacy of Butyric acid pro-drug nanoparticle in retinal neuroprotection
评估丁酸前药纳米颗粒在视网膜神经保护中的功效
- 批准号:
10602346 - 财政年份:2023
- 资助金额:
$ 12.73万 - 项目类别:
Etiologic Heterogeneity Between Molecular Subtypes of Prostate Cancer
前列腺癌分子亚型之间的病因异质性
- 批准号:
10735935 - 财政年份:2023
- 资助金额:
$ 12.73万 - 项目类别:
Exploring metabolic governance of immune cell form and function
探索免疫细胞形式和功能的代谢调控
- 批准号:
10725429 - 财政年份:2023
- 资助金额:
$ 12.73万 - 项目类别:
Multiscale modeling of spatiotemporal evolution in Barrett's esophagus
巴雷特食管时空演化的多尺度建模
- 批准号:
10659649 - 财政年份:2023
- 资助金额:
$ 12.73万 - 项目类别:
Mechanoluminescent nanomaterials for optogenetic neuromodulation
用于光遗传学神经调节的机械发光纳米材料
- 批准号:
10616188 - 财政年份:2023
- 资助金额:
$ 12.73万 - 项目类别:
CHaracterizing Effects of Air Quality In Maternal, Newborn and Child Health: The CHEAQI-MNCH Research Project
表征空气质量对孕产妇、新生儿和儿童健康的影响:CHEAQI-MNCH 研究项目
- 批准号:
10713481 - 财政年份:2023
- 资助金额:
$ 12.73万 - 项目类别:
Molecular control of vascular smooth muscle reprogramming in arteriovenous fistula maturation
动静脉内瘘成熟过程中血管平滑肌重编程的分子控制
- 批准号:
10735849 - 财政年份:2023
- 资助金额:
$ 12.73万 - 项目类别:
Novel strategies to target lung cancer metastasis to bone
针对肺癌骨转移的新策略
- 批准号:
10646351 - 财政年份:2022
- 资助金额:
$ 12.73万 - 项目类别: