Additive manufacturing of advanced medical devices for cartilage regeneration: minimally invasive early intervention
用于软骨再生的先进医疗器械的增材制造:微创早期干预
基本信息
- 批准号:EP/N025059/1
- 负责人:
- 金额:$ 134.7万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
No current surgical technique can regenerate articular cartilage and no current device can mimic the properties of cartilage. This Partnership will accelerate delivery of an innovative medical device for healing cartilage that will cross a frontier in orthopaedic surgery, allowing regeneration of articular cartilage rather than replacement. The device will restore cartilage to its healthy state. The surgical technique will be optimised through a new precise and minimally invasive keyhole technique. Patients will be able to use their knee immediately after the operation and recovery time will be rapid. Osteoarthritis affects 1 in 4 people, is debilitating and costs >£3bn in UK lost economic productivity, >£2.4bn in out-of-work benefits and contributes to the NHS's £5.4bn annual spend on musculoskeletal disorders. Current treatment for severe osteoarthritis is total joint replacement and current best practice for cartilage impact damage is microfracture, which involves drilling into bone to liberate the marrow, which can form weak fibrous cartilage over the defect. Early intervention is important as complete degeneration results in total joint replacement. The problem is that the cartilage only lasts 2-5 years before the procedure must be repeated and total joint replacements are major operations, which involve removing a lot of tissue, and last 15-25 years. Previous EPSRC research grants by Jones led to the invention of a new type of material that produced unique properties in terms of strength, flexibility and biodegradation. In fact, the mechanical properties can be precisely selected to match cartilage or bone. The material can also self heal. When 3-D printed, the material is able to instruct cartilage cells to produce articular cartilage rather than fibrous cartilage. Imperial Innovations submitted a patent, providing a strong IP position. Our Healthcare Impact Partnership will bring expertise in biomechanics, precision surgery, medical device manufacture, technology transfer and regulatory procedures and product delivery. The team will evaluate the device and develop manufacturing capability, producing cost-effective, reliable and effective medical devices. Surgery will be tested in cadaver knees for how they fit and ensure they can provide an immediate articular surface. Then, biological testing will determine whether our hypothesis that the device can guide the regeneration of the cartilage under joint loading. Eventually, surgeons will be able to send implant design specifications to the medical device company and receive a bespoke, patient specific device within a few days.
目前没有一种外科技术可以再生关节软骨,也没有一种现有的设备可以模拟软骨的特性。这一合作伙伴关系将加快提供一种治疗软骨的创新医疗设备,这种设备将跨越矫形外科的前沿,允许关节软骨再生而不是替换。该设备将使软骨恢复到其健康状态。通过一种新的精确和微创的锁孔技术,手术技术将得到优化。患者将能够在手术后立即使用膝盖,恢复时间将会很快。骨关节炎影响着每4个人中的1个人,使人虚弱,并使英国损失30亿英镑的经济生产力,24亿英镑的失业救济金,以及英国国民医疗服务体系每年54亿英镑的肌肉骨骼疾病支出。目前治疗严重骨关节炎的方法是全关节置换术,目前软骨冲击性损伤的最佳治疗方法是微骨折,即钻入骨中释放骨髓,在缺损处形成脆弱的纤维软骨。早期干预很重要,因为完全退变会导致关节完全置换。问题是,在必须重复手术之前,软骨只持续2-5年,而全关节置换是涉及大量组织切除的主要手术,持续15-25年。琼斯之前的EPSRC研究拨款导致了一种新型材料的发明,这种材料在强度、灵活性和生物降解性方面具有独特的性能。事实上,机械性能可以精确地选择以匹配软骨或骨骼。这种材料也可以自我愈合。当3D打印时,该材料能够指示软骨细胞产生关节软骨,而不是纤维软骨。帝国创新提交了一项专利,提供了强有力的知识产权地位。我们的医疗影响伙伴关系将带来生物力学、精密手术、医疗器械制造、技术转让和监管程序以及产品交付方面的专业知识。该团队将评估该设备并开发制造能力,生产具有成本效益、可靠和有效的医疗设备。手术将在身体膝盖上进行测试,以确定它们的适合性,并确保它们能够立即提供关节表面。然后,生物测试将确定我们的假设,即该设备是否可以在关节负荷下引导软骨再生。最终,外科医生将能够将植入物设计规范发送给医疗设备公司,并在几天内收到定制的、针对患者的设备。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exploratory Full-Field Mechanical Analysis across the Osteochondral Tissue-Biomaterial Interface in an Ovine Model.
- DOI:10.3390/ma13183911
- 发表时间:2020-09-04
- 期刊:
- 影响因子:0
- 作者:Clark JN;Heyraud A;Tavana S;Al-Jabri T;Tallia F;Clark B;Blunn GW;Cobb JP;Hansen U;Jones JR;Jeffers JRT
- 通讯作者:Jeffers JRT
Can metabolic profiling provide a new description of osteoarthritis and enable a personalised medicine approach?
- DOI:10.1007/s10067-020-05106-3
- 发表时间:2020-12
- 期刊:
- 影响因子:3.4
- 作者:Jaggard MKJ;Boulangé CL;Graça G;Vaghela U;Akhbari P;Bhattacharya R;Williams HRT;Lindon JC;Gupte CM
- 通讯作者:Gupte CM
Quantifying 3D Strain in Scaffold Implants for Regenerative Medicine.
- DOI:10.3390/ma13173890
- 发表时间:2020-09-03
- 期刊:
- 影响因子:0
- 作者:Clark JN;Tavana S;Heyraud A;Tallia F;Jones JR;Hansen U;Jeffers JRT
- 通讯作者:Jeffers JRT
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julian Jones其他文献
NaOH処理チタン表面へのゾルゲル・ディップ法による生体活性ガラス膜コーティング
采用溶胶-凝胶浸渍法在 NaOH 处理的钛表面涂覆生物活性玻璃膜
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
上田恭介;Alexander M. Samuel;Julian Jones;成島尚之 - 通讯作者:
成島尚之
Understanding cellular uptake of silicate species in bone cells
了解骨细胞中硅酸盐物质的细胞摄取
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Joel Turner;Azadeh Rezaei;Akiko Obata;Alexandra Porter;Julian Jones;Gavin Jell - 通讯作者:
Gavin Jell
Stanislavski and The Theatre of The Absurd
斯坦尼斯拉夫斯基与荒诞派戏剧
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0.2
- 作者:
Julian Jones - 通讯作者:
Julian Jones
Electrospun silica/poly(γ-glutamate) hybrid fibremats for bone regeneration
用于骨再生的电纺二氧化硅/聚(γ-谷氨酸)混合纤维垫
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Akiko Obata;Toshihisa Mizuno;Shuhei Koeda;Makoto Shimada;Koji Mizuno;Makito Iguchi;Julian Jones;Toshihiro Kasuga - 通讯作者:
Toshihiro Kasuga
Cellular uptake of silicate species in bone cells
骨细胞中硅酸盐物质的细胞摄取
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Joel Turner;Azadeh Rezaei;Julian Jones;Alexandra Porter;Akiko Obata;Gavin Jell - 通讯作者:
Gavin Jell
Julian Jones的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julian Jones', 18)}}的其他基金
3D printing multifunctional devices without internal interfaces for cartilage repair
3D打印无内部接口的多功能软骨修复装置
- 批准号:
EP/W034093/1 - 财政年份:2023
- 资助金额:
$ 134.7万 - 项目类别:
Research Grant
Biodegradable hybrid screws for ligament-bone interface regeneration
用于韧带-骨界面再生的可生物降解混合螺钉
- 批准号:
EP/S025782/1 - 财政年份:2019
- 资助金额:
$ 134.7万 - 项目类别:
Research Grant
Advanced acrylate based hybrid materials for osteochondral regeneration
用于骨软骨再生的先进丙烯酸酯混合材料
- 批准号:
EP/M019950/1 - 财政年份:2015
- 资助金额:
$ 134.7万 - 项目类别:
Research Grant
Tailoring the atomic structure of advanced sol-gel materials for regenerative medicine through simulation
通过模拟定制用于再生医学的先进溶胶凝胶材料的原子结构
- 批准号:
EP/M004414/1 - 财政年份:2014
- 资助金额:
$ 134.7万 - 项目类别:
Research Grant
Hybrid approaches to tissue engineering
组织工程的混合方法
- 批准号:
EP/I020861/1 - 财政年份:2011
- 资助金额:
$ 134.7万 - 项目类别:
Research Grant
Scottish Manufacturing Institute - Renewal, 2008 - 2013
苏格兰制造学院 - 更新,2008 - 2013
- 批准号:
EP/F02553X/1 - 财政年份:2008
- 资助金额:
$ 134.7万 - 项目类别:
Research Grant
Identification and Optimisation of Atomic Scale Influences on Cell Response to Novel Bioactive Glass and Nanocomposite Tissue Scaffolds
原子尺度对新型生物活性玻璃和纳米复合组织支架细胞反应影响的识别和优化
- 批准号:
EP/E057098/1 - 财政年份:2008
- 资助金额:
$ 134.7万 - 项目类别:
Research Grant
相似海外基金
AMFaces: Advanced Additive Manufacturing of User-Focused Facial Prostheses with Real-Life Colour Appearance
AMFaces:以用户为中心的面部假体的先进增材制造,具有真实的色彩外观
- 批准号:
EP/W033968/1 - 财政年份:2023
- 资助金额:
$ 134.7万 - 项目类别:
Research Grant
Advanced additive manufacturing of multifunctional composites
多功能复合材料的先进增材制造
- 批准号:
RGPIN-2018-04566 - 财政年份:2022
- 资助金额:
$ 134.7万 - 项目类别:
Discovery Grants Program - Individual
Research on Advanced Metal Additive Manufacturing
先进金属增材制造研究
- 批准号:
RGPIN-2021-03882 - 财政年份:2022
- 资助金额:
$ 134.7万 - 项目类别:
Discovery Grants Program - Individual
Additive manufacturing of advanced aluminum alloys for transportation industry
交通运输行业先进铝合金增材制造
- 批准号:
RGPIN-2018-04188 - 财政年份:2022
- 资助金额:
$ 134.7万 - 项目类别:
Discovery Grants Program - Individual
Advanced Additive Manufacturing Infrastructure: Towards Sustainable and Adaptive Manufacturing of More Complex and Continuous Fiber-Reinforced Composites
先进的增材制造基础设施:实现更复杂和连续的纤维增强复合材料的可持续和适应性制造
- 批准号:
RTI-2023-00268 - 财政年份:2022
- 资助金额:
$ 134.7万 - 项目类别:
Research Tools and Instruments
Advanced Impact Resistant Auxetic Materials via Additive Manufacturing
通过增材制造先进的抗冲击拉胀材料
- 批准号:
RGPIN-2020-05586 - 财政年份:2022
- 资助金额:
$ 134.7万 - 项目类别:
Discovery Grants Program - Individual
Advanced additive manufacturing of multifunctional composites
多功能复合材料的先进增材制造
- 批准号:
RGPIN-2018-04566 - 财政年份:2021
- 资助金额:
$ 134.7万 - 项目类别:
Discovery Grants Program - Individual
Advanced Impact Resistant Auxetic Materials via Additive Manufacturing
通过增材制造先进的抗冲击拉胀材料
- 批准号:
RGPIN-2020-05586 - 财政年份:2021
- 资助金额:
$ 134.7万 - 项目类别:
Discovery Grants Program - Individual
Development of advanced part recognition toolkit for automated additive manufacturing post-processing system
开发用于自动化增材制造后处理系统的先进零件识别工具包
- 批准号:
2606817 - 财政年份:2021
- 资助金额:
$ 134.7万 - 项目类别:
Studentship