Mapping the mesoscale structural landscape using "sculpted" chiral plasmonic fields

使用“雕刻的”手性等离子体场绘制中尺度结构景观

基本信息

  • 批准号:
    EP/P00086X/1
  • 负责人:
  • 金额:
    $ 136.47万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Spectroscopy can detect and characterise the properties of individual molecules through probing quantised states. It is a ubiquitous tool which has been instrumental in many new discoveries over the last 100 years. The applications of spectroscopy are numerous and wide ranging: it allows astronomers to detect water in the atmospheres of planets light years away; and enables art historians to determine the pigments used by old masters in their paintings. Given the unmitigated successes of the spectroscopic method, characterisation of the mesoscale is still one area which remains unconquered. The mesoscale is the intermediate length scale (10-1000 nm) between the molecular (quantum) and the macroscopic (classical) worlds. The length scale is important because it occupies the range over which collective properties begin to dominate those of individual molecules. For instance, it marks the transition from chemistry to biology, when individual molecular building blocks self-assemble into complex biological architectures. Since mesoscale molecular assemblies are effectively classical bodies, there is no quantised state which is representative of the overall structure of the object that can be probed spectroscopically. This limitation of the optical spectroscopic paradigm does have practical implications. For instance, while atomic and molecular pollutants in water and the atmosphere can be readily detected (even monitored in real time) with spectroscopy, detecting and characterising a mesoscale molecular assembly such as an unknown virus can take a significant amounts of time and resource; thus extending time to diagnosis and effective treatment. In this proposal we wish to unlock the shackles of the established optical spectroscopic paradigm by using chiral evanescent electromagnetic fields, rather than light, to rapidly detect and characterise mesoscale molecular structure. When light scatters from chiral plasmonic nanostructures, evanescent EM fields are created in the near field which have a chiral asymmetry (i.e. handedness). In essence the near fields are sculpted by the geometry of the nanostructure, and are imbued with a sense of chirality. The Glasgow Group were the first to demonstrate the existence of these chiral fields, and that they could possess enhanced chiral asymmetry (referred to as superchirality) (Nature Nano 2010). The purpose of this proposal is to show that these superchiral fields can uniquely characterise mesoscale molecular structure, through the use of wild type and synthetic viruses as model systems. To illustrate the potential of the spectroscopy, label free detection of viruses spiked into a biofluid will be demonstrated.
光谱学可以通过探测量子态来检测和表征单个分子的性质。它是一种无处不在的工具,在过去的100年里帮助了许多新的发现。光谱学的应用范围很广:它使天文学家能够探测到光年之外的行星大气中的水;使艺术历史学家能够确定古代大师在他们的画中使用的颜料。鉴于光谱学方法取得的巨大成功,中尺度的表征仍然是一个尚未攻克的领域。介观尺度是介于分子(量子)和宏观(经典)世界之间的中间长度尺度(10-1000 nm)。长度标度很重要,因为它占据了集体性质开始支配单个分子性质的范围。例如,当单个分子构建块自组装成复杂的生物结构时,它标志着从化学到生物学的转变。由于中尺度分子组装实际上是经典的物体,所以不存在代表物体整体结构的量子态,可以用光谱学来探测。光学光谱范例的这种局限性确实具有实际意义。例如,虽然水和大气中的原子和分子污染物可以很容易地用光谱学检测(甚至实时监测),但检测和表征中尺度分子组合,如未知病毒,可能需要大量的时间和资源;因此,延长诊断和有效治疗的时间。在这一提议中,我们希望通过使用手性瞬逝电磁场而不是光来快速检测和表征中尺度分子结构,从而解锁已建立的光学光谱范式的束缚。当光从手性等离子体纳米结构散射时,在近场中产生了具有手性不对称性(即利手)的瞬逝电磁场。本质上,近场是由纳米结构的几何形状塑造的,充满了手性的感觉。格拉斯哥小组第一个证明了这些手性场的存在,并且它们可能具有增强的手性不对称性(称为超手性)(自然纳米2010)。这一提议的目的是通过使用野生型和合成病毒作为模型系统,证明这些超手征场可以唯一地表征中尺度分子结构。为了说明光谱学的潜力,将演示对添加到生物体液中的病毒进行无标记检测。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Chiral Plasmonic Fields Probe Structural Order of Biointerfaces.
  • DOI:
    10.1021/jacs.8b03634
  • 发表时间:
    2018-07-11
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Kelly C;Tullius R;Lapthorn AJ;Gadegaard N;Cooke G;Barron LD;Karimullah AS;Rotello VM;Kadodwala M
  • 通讯作者:
    Kadodwala M
Active Chiral Plasmonics: Flexoelectric Control of Nanoscale Chirality
  • DOI:
    10.1002/adpr.202000062
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Gilroy;Katie McKay;Machar Devine;R. W. Webster;N. Gadegaard;A. Karimullah;D. Maclaren;M. Kadodwala
  • 通讯作者:
    C. Gilroy;Katie McKay;Machar Devine;R. W. Webster;N. Gadegaard;A. Karimullah;D. Maclaren;M. Kadodwala
Detecting Antibody-Antigen Interactions with Chiral Plasmons: Factors Influencing Chiral Plasmonic Sensing
检测抗体-抗原与手性等离子体激元的相互作用:影响手性等离子体传感的因素
  • DOI:
    10.1002/adpr.202100155
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Koyroytsaltis-McQuire D
  • 通讯作者:
    Koyroytsaltis-McQuire D
Superchiral hot-spots in "real" chiral plasmonic structures
  • DOI:
    10.1039/d1ma00831e
  • 发表时间:
    2021-11-02
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Gilroy, C.;Koyroytsaltis-McQuire, D. J. P.;Kadodwala, M.
  • 通讯作者:
    Kadodwala, M.
Controlling the symmetry of inorganic ionic nanofilms with optical chirality.
控制具有光学手性的无机离子纳米膜的对称性。
  • DOI:
    10.1038/s41467-020-18869-9
  • 发表时间:
    2020-10-14
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Kelly C;MacLaren DA;McKay K;McFarlane A;Karimullah AS;Gadegaard N;Barron LD;Franke-Arnold S;Crimin F;Götte JB;Barnett SM;Kadodwala M
  • 通讯作者:
    Kadodwala M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

M Kadodwala其他文献

M Kadodwala的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('M Kadodwala', 18)}}的其他基金

"Meta-chemistry": Nanoscale chemical control using spatially localised solvent heating
“元化学”:利用空间局部溶剂加热的纳米级化学控制
  • 批准号:
    EP/S012745/1
  • 财政年份:
    2019
  • 资助金额:
    $ 136.47万
  • 项目类别:
    Research Grant
Meta-Smart: Merging de novo designed biomolecules with plasmonic metamaterials for new technologies
Meta-Smart:将从头设计的生物分子与等离激元超材料相结合,以实现新技术
  • 批准号:
    EP/S029168/1
  • 财政年份:
    2019
  • 资助金额:
    $ 136.47万
  • 项目类别:
    Research Grant
Plasmon-Enhanced Chiroptical Biosensors
等离激元增强手性光学生物传感器
  • 批准号:
    EP/K034936/1
  • 财政年份:
    2013
  • 资助金额:
    $ 136.47万
  • 项目类别:
    Research Grant
Breaking down barriers to cause a paradigm shift in ultra-sensitive detection of protein structure.
打破障碍,引起蛋白质结构超灵敏检测的范式转变。
  • 批准号:
    G0902256/1
  • 财政年份:
    2010
  • 资助金额:
    $ 136.47万
  • 项目类别:
    Research Grant

相似海外基金

Mesoscale structural biology using deep learning
使用深度学习的介观结构生物学
  • 批准号:
    BB/T011823/1
  • 财政年份:
    2021
  • 资助金额:
    $ 136.47万
  • 项目类别:
    Research Grant
Mesoscale Structural Control in 2D Peptide Assemblies
二维肽组装中的介观结构控制
  • 批准号:
    1808509
  • 财政年份:
    2018
  • 资助金额:
    $ 136.47万
  • 项目类别:
    Standard Grant
Concurrent Stochastic Characterization of Mesoscale Material Heterogeneities and Macroscale Structural Complexities
介观材料异质性和宏观结构复杂性的并行随机表征
  • 批准号:
    1728525
  • 财政年份:
    2017
  • 资助金额:
    $ 136.47万
  • 项目类别:
    Standard Grant
Made to order? Structural order and disorder in solid materials on the mesoscale
定做吗?
  • 批准号:
    262815-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 136.47万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanistic studies of heterochromatin mesoscale structural dynamics with DNA origami nanotechnology
DNA折纸纳米技术异染色质介观结构动力学的机理研究
  • 批准号:
    1715321
  • 财政年份:
    2017
  • 资助金额:
    $ 136.47万
  • 项目类别:
    Standard Grant
Made to order? Structural order and disorder in solid materials on the mesoscale
定做吗?
  • 批准号:
    262815-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 136.47万
  • 项目类别:
    Discovery Grants Program - Individual
Made to order? Structural order and disorder in solid materials on the mesoscale
定做吗?
  • 批准号:
    262815-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 136.47万
  • 项目类别:
    Discovery Grants Program - Individual
Made to order? Structural order and disorder in solid materials on the mesoscale
定做吗?
  • 批准号:
    262815-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 136.47万
  • 项目类别:
    Discovery Grants Program - Individual
Made to order? Structural order and disorder in solid materials on the mesoscale
定做吗?
  • 批准号:
    262815-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 136.47万
  • 项目类别:
    Discovery Grants Program - Individual
ptimization of FIB/SEM techniques ? the novel ultrastructureeanalysis by combination of serial thin ablation and block surface material contrastobservation - for biomedical mesoscale three dimentional structural analysis.
FIB/SEM 技术的优化 ?
  • 批准号:
    23659104
  • 财政年份:
    2012
  • 资助金额:
    $ 136.47万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了