Methodology for High-Dimensional Multivariate Extremes

高维多元极值方法

基本信息

  • 批准号:
    EP/P002838/1
  • 负责人:
  • 金额:
    $ 30.5万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Most people accept that there are risks in our day-to-day lives. However, we also expect that these risks are managed so that the probability of catastrophe is acceptably low, without infringing on our ability to get on with daily life. For example, we could perhaps eliminate flooding by building very high flood defences on all riverbanks, but we choose not to because this would be disproportionate to the risk: diverting money from other necessary services, and creating other inconveniences.In order to manage the risk proportionately, we need to be well informed about the probability of such rare but disastrous events. The question is how can we do this when we may never have witnessed an event of the size we with to protect against? Extreme value theory is the probabilistic theory of rare events, and provides a rational framework for drawing inference about the likelihood of future extremes given data on past extremes. Models for extremes of a single variable (e.g. river flow at a particular gauging station) are relatively well developed. However, most catastrophic events occur when extremes of different variables combine, or aggregate over space. In order to fully understand the risks we therefore need multivariate and spatial models, and in order that these models produce reliable estimates, they should be motivated by extreme value theory. The multivariate and spatial extreme value models that are commonly used today suffer from restrictive assumptions and / or can only be applied to very low dimensions (e.g. to the joint extremes of two variables). The goal of this project is to build new models for multivariate and spatial extremes that are appropriate under more general assumptions, and to extremes of a greater number of variables, so that they are more applicable to the problems of interest. This will enable better estimation of the probability of extreme events, and thus improve our management of these risks.
大多数人都认为我们的日常生活中存在风险。然而,我们也期望这些风险得到管理,使灾难的可能性降低到可接受的程度,而不影响我们继续日常生活的能力。例如,我们也许可以通过在所有河岸上建造非常高的防洪设施来消除洪水,但我们选择不这样做,因为这与风险不成比例:从其他必要的服务中转移资金,并造成其他不便。为了合理地管理风险,我们需要充分了解这种罕见但灾难性事件的概率。问题是,当我们可能从未目睹过我们要防范的规模如此之大的事件时,我们如何做到这一点?极值理论是罕见事件的概率理论,并提供了一个合理的框架,以推断未来极端事件的可能性。单一变量的极值模型(例如,特定测量站的河流流量)相对较完善。然而,大多数灾难性事件发生时,极端的不同变量联合收割机,或聚集在空间。因此,为了充分理解风险,我们需要多变量和空间模型,为了使这些模型产生可靠的估计,它们应该受到极值理论的激励。目前常用的多变量和空间极值模型受到限制性假设的影响,并且/或者只能应用于非常低的维度(例如,两个变量的联合极值)。该项目的目标是建立新的模型,适用于更一般的假设下的多变量和空间的极端情况,以及更多变量的极端情况,使它们更适用于感兴趣的问题。这将有助于更好地估计极端事件的概率,从而改善我们对这些风险的管理。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling Spatial Processes with Unknown Extremal Dependence Class
Spatial deformation for nonstationary extremal dependence
非平稳极值依赖性的空间变形
  • DOI:
    10.1002/env.2671
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Richards J
  • 通讯作者:
    Richards J
A geometric investigation into the tail dependence of vine copulas
  • DOI:
    10.1016/j.jmva.2021.104736
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Emma S. Simpson;J. Wadsworth;J. Tawn
  • 通讯作者:
    Emma S. Simpson;J. Wadsworth;J. Tawn
Determining the dependence structure of multivariate extremes
  • DOI:
    10.1093/biomet/asaa018
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Emma S. Simpson;J. Wadsworth;J. Tawn
  • 通讯作者:
    Emma S. Simpson;J. Wadsworth;J. Tawn
Peaks over thresholds modelling with multivariate generalized Pareto distributions
使用多元广义帕累托分布进行峰值超过阈值建模
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Kiriliouk A
  • 通讯作者:
    Kiriliouk A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennifer Wadsworth其他文献

Jennifer Wadsworth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jennifer Wadsworth', 18)}}的其他基金

Exploring and exploiting new representations for multivariate extremes
探索和利用多元极值的新表示
  • 批准号:
    EP/X010449/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Research Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Multivariate Modelling and Inference of Dependent and High-Dimensional Data in Recent Genetic Studies
最近遗传学研究中相关和高维数据的多变量建模和推理
  • 批准号:
    RGPIN-2019-06727
  • 财政年份:
    2022
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Discovery Grants Program - Individual
Multivariate Stochastic Volatility Models for High-dimensional and High Frequency Data
高维高频数据的多元随机波动率模型
  • 批准号:
    22K01429
  • 财政年份:
    2022
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Robust Inference for Multivariate Growth Curve Models and High-Dimensional Extensions
多元增长曲线模型和高维扩展的稳健推理
  • 批准号:
    RGPIN-2018-06693
  • 财政年份:
    2022
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Discovery Grants Program - Individual
Multivariate Modelling and Inference of Dependent and High-Dimensional Data in Recent Genetic Studies
最近遗传学研究中相关和高维数据的多变量建模和推理
  • 批准号:
    RGPIN-2019-06727
  • 财政年份:
    2021
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Discovery Grants Program - Individual
Robust Inference for Multivariate Growth Curve Models and High-Dimensional Extensions
多元增长曲线模型和高维扩展的稳健推理
  • 批准号:
    RGPIN-2018-06693
  • 财政年份:
    2021
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Discovery Grants Program - Individual
Development of pattern recognition algorithm for ultra low frequency multivariate time-series data considering dimensional correlation
考虑量纲相关性的超低频多元时间序列数据模式识别算法开发
  • 批准号:
    21K11938
  • 财政年份:
    2021
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An eigenfunction approach to multivariate and high-dimensional survival analysis
多变量和高维生存分析的特征函数方法
  • 批准号:
    RGPIN-2016-05722
  • 财政年份:
    2021
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Discovery Grants Program - Individual
Multivariate Modelling and Inference of Dependent and High-Dimensional Data in Recent Genetic Studies
最近遗传学研究中相关和高维数据的多变量建模和推理
  • 批准号:
    RGPIN-2019-06727
  • 财政年份:
    2020
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Discovery Grants Program - Individual
Robust Inference for Multivariate Growth Curve Models and High-Dimensional Extensions
多元增长曲线模型和高维扩展的稳健推理
  • 批准号:
    RGPIN-2018-06693
  • 财政年份:
    2020
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Discovery Grants Program - Individual
An eigenfunction approach to multivariate and high-dimensional survival analysis
多变量和高维生存分析的特征函数方法
  • 批准号:
    RGPIN-2016-05722
  • 财政年份:
    2020
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了