An eigenfunction approach to multivariate and high-dimensional survival analysis

多变量和高维生存分析的特征函数方法

基本信息

  • 批准号:
    RGPIN-2016-05722
  • 负责人:
  • 金额:
    $ 1.09万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Survival analysis is the study of so-called time-to-event data, and typically multivariate survival data arise either as parallel data, where one tries to observe times to events of interest (such as disease onset, death, failure) for several related individuals (such as family members, organs of human body, components of a system), or serial data, where a series of successive events are tracked (such as stages of a disease), or possibly as a combination of these two schemes. Often time to event data is combined with high-dimensional covariates, such as information on genetic markers available from gene expression data. Two major sources of complication in time to event data are random censoring, whereby certain events cannot be observed due to insufficient followup, and random truncation, whereby an event can be observed only if it occurs after a threshold event (such as a disease occuring after age at beginning of study). For univariate survival data (i.e., when only one individual or component is being tracked) subject to random censoring and truncation, there exist two famous, and by now classical, estimation procedures called Kaplan-Meier and Lynden-Bell estimators, respectively. These estimates are widely applicable since they were derived without any parametric model assumption. Moreover, a host of statistical procedures for such data, such as studying effects of covariates on the time to event, can be developed based on these estimators. Unfortunately, no satisfactory multivariate versions of the latter were available until now. Consequently, statisticians were forced to rely on restrictive model assumptions in order to analyze censored or truncated multivariate survival data. For instance, effects of covariates on survival times were studied under the assumption that the former were not subject to censoring or truncation. Recently, my co-author and I have constructed a multivariate Kaplan-Meier estimator under random censoring, which shares all the nice practical and theoretical properties of its univariate counterpart. In fact, our method is dimension-free, in that one needs to solve the same equation in any dimension, and it produces the classical univariate estimator when applied to univariate data. The main goal of the present project is precisely to extend the procedure to multivariate censoring-cum-truncation and a more complicated semi-censoring model, both of which are of great importance in survival studies. Just like the univariate Kaplan-Meier and Lynden-Bell estimators our new method too has the potential to generate a wealth of inference procedures for multivariate survival data, and we propose to explore them systematically. In particular, we shall study high-dimensional covariates in a much more general set-up than has been attempted so far. In addition to opening up a new line of research, our project has immense possibilities for training graduate students.
生存分析是对所谓事件时间数据的研究,通常多变量生存数据要么是平行数据,即试图观察几个相关个体(如家庭成员、人体器官、系统组成部分)感兴趣的事件(如疾病发作、死亡、衰竭)的时间,要么是串行数据,即跟踪一系列连续事件(如疾病的阶段),或者可能是这两种方案的组合。通常,事件发生时间数据与高维协变量相结合,例如从基因表达数据中获得的遗传标记信息。事件数据在时间上出现并发症的两个主要来源是随机审查,即由于随访不足而无法观察到某些事件,以及随机截断,即只有在阈值事件之后才可以观察到事件(例如在研究开始时年龄之后发生的疾病)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sen, Arusharka其他文献

Boundary behavior in High Dimension, Low Sample Size asymptotics of PCA
  • DOI:
    10.1016/j.jmva.2012.03.005
  • 发表时间:
    2012-08-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Jung, Sungkyu;Sen, Arusharka;Marron, J. S.
  • 通讯作者:
    Marron, J. S.

Sen, Arusharka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sen, Arusharka', 18)}}的其他基金

An eigenfunction approach to multivariate and high-dimensional survival analysis
多变量和高维生存分析的特征函数方法
  • 批准号:
    RGPIN-2016-05722
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
An eigenfunction approach to multivariate and high-dimensional survival analysis
多变量和高维生存分析的特征函数方法
  • 批准号:
    RGPIN-2016-05722
  • 财政年份:
    2019
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
An eigenfunction approach to multivariate and high-dimensional survival analysis
多变量和高维生存分析的特征函数方法
  • 批准号:
    RGPIN-2016-05722
  • 财政年份:
    2018
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
An eigenfunction approach to multivariate and high-dimensional survival analysis
多变量和高维生存分析的特征函数方法
  • 批准号:
    RGPIN-2016-05722
  • 财政年份:
    2017
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
An eigenfunction approach to multivariate and high-dimensional survival analysis
多变量和高维生存分析的特征函数方法
  • 批准号:
    RGPIN-2016-05722
  • 财政年份:
    2016
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Cure-rates and shape-restricted hazard functions under censoring
审查下的治愈率和形状限制的危险函数
  • 批准号:
    262330-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Cure-rates and shape-restricted hazard functions under censoring
审查下的治愈率和形状限制的危险函数
  • 批准号:
    262330-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Cure-rates and shape-restricted hazard functions under censoring
审查下的治愈率和形状限制的危险函数
  • 批准号:
    262330-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Cure-rates and shape-restricted hazard functions under censoring
审查下的治愈率和形状限制的危险函数
  • 批准号:
    262330-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Cure-rates and shape-restricted hazard functions under censoring
审查下的治愈率和形状限制的危险函数
  • 批准号:
    262330-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

量化 domain 的拓扑性质
  • 批准号:
    11771310
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
基于Riemann-Hilbert方法的相关问题研究
  • 批准号:
    11026205
  • 批准年份:
    2010
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
  • 批准号:
    81070152
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目
MBR中溶解性微生物产物膜污染界面微距作用机制定量解析
  • 批准号:
    50908133
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
新型低碳马氏体高强钢在不同低温下解理断裂物理模型的研究
  • 批准号:
    50671047
  • 批准年份:
    2006
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
基于生态位理论与方法优化沙区人工植物群落的研究
  • 批准号:
    30470298
  • 批准年份:
    2004
  • 资助金额:
    15.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Ethnic-racial discrimination influences on neural representation of threat learning in Latina girls: A multivariate modeling approach
职业:民族种族歧视对拉丁裔女孩威胁学习的神经表征的影响:多元建模方法
  • 批准号:
    2239067
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Continuing Grant
Deciphering the Glycan Code in Human Alzheimer's Disease Brain
破译人类阿尔茨海默病大脑中的聚糖代码
  • 批准号:
    10704673
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
Cell Therapy Program with Scale-up cGMP Manufacturing of Human Corneal Stromal Stem Cells
细胞治疗计划,扩大人类角膜基质干细胞的 cGMP 生产
  • 批准号:
    10720562
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
Physics-informed Machine Learning approach for a selective, sensitive, and rapid sensor for detecting unsafe levels of carcinogenic/toxic VOCs
基于物理的机器学习方法,用于选择性、灵敏且快速的传感器,用于检测致癌/有毒 VOC 的不安全水平
  • 批准号:
    10600819
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
A Multidimensional Approach to Understanding Prenatal Health and Psychosocial Factors in Relation to the Maternal Inflammatory Milieu and Offspring Neurodevelopment
了解与母体炎症环境和后代神经发育相关的产前健康和心理社会因素的多维方法
  • 批准号:
    10607823
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
Defining the multivariate genomic signature of pubertal markers and impact on lifespan psychopathology
定义青春期标记的多变量基因组特征及其对寿命精神病理学的影响
  • 批准号:
    10641312
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
Mass Multivariate Derivation and Validation of AUD Biotypes using Developmental Imaging and Genomic Approaches
使用发育成像和基因组方法对 AUD 生物型进行大规模多变量推导和验证
  • 批准号:
    10429020
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
Deciphering the Glycan Code in Human Alzheimer’s Disease Brain
破译人类阿尔茨海默病大脑中的聚糖代码
  • 批准号:
    10515406
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
Neurocognitive mechanisms of reward - motivated memory persistence across age
奖励驱动的跨年龄记忆持久性的神经认知机制
  • 批准号:
    10565930
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
Modeling the neural bases of aphasia in neurosurgical patients: A multivariate, connectivity-based approach
神经外科患者失语症的神经基础建模:基于连接的多变量方法
  • 批准号:
    10536156
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了