Data-Driven Coarse-Graining using Space-Time Diffusion Maps

使用时空扩散图的数据驱动粗粒度

基本信息

  • 批准号:
    EP/P006175/1
  • 负责人:
  • 金额:
    $ 38.84万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Dynamical systems with many degrees of freedom arise in a wide range of applications, including large scale molecular dynamics, climate and weather studies, and electrical power networks. The challenge in simulation is normally to extract statistical information, for example the average propensity of a given state of the system or the average time that elapses between certain events. Simulation data is easy to generate but often poorly utilized. The goal of this project is the development of a data-driven method for the automatic detection of a simplified description of the system based on a set of collective variables which can be used within efficient statistical extraction procedures. These slowest degrees of freedom are typically the most important ones. The dynamics are characterised as fluctuations in the vicinity of given state punctuated by relatively rare events describing transitions between the states. Efficiently identifying collective variables is the crucial first step in the design of coarse-grained models which can allow many order of magnitude increases in the accessible simulation timescale. By automatically finding collective variables, we can greatly simplify rapid study and comparison of many systems. The research builds on the technique of diffusion maps, whereby the eigenfunctions of a diffusion operator are used to characterise the metastable (slowly changing) states of the system. The potential impact of automatic coarse-graining will be felt most profoundly in fields such as rational drug design, where it is necessary to select specific drug molecules for their properties in interaction with some target, e.g. a protein. Bio-molecular simulation depends on the use of very specialised and intensely developed simulation codes which are the products of many years of development and government investment. In order to accelerate the implementation and testing of novel algorithms in this important area, this project includes a detailed plan for software development within the EPSRC-funded MIST (Molecular Integrator Software Tools) platform. Testing of the software methodology will be conducted via collaborations with chemists and pharmaceutical chemists, including researchers at Rice University (Houston, Texas) and Memorial Sloan Kettering Cancer Research Center (New York).
具有多个自由度的动力系统出现在广泛的应用中,包括大规模分子动力学、气候和天气研究以及电力网络。模拟中的挑战通常是提取统计信息,例如系统给定状态的平均倾向或某些事件之间经过的平均时间。模拟数据很容易生成,但往往利用率不高。该项目的目标是开发一种数据驱动的方法,用于基于一组集体变量自动检测系统的简化描述,这些变量可在有效的统计提取程序中使用。这些最慢的自由度通常是最重要的。动态的特征是给定状态附近的波动,其中不时出现描述状态之间转换的相对罕见的事件。有效识别集体变量是粗粒度模型设计中至关重要的第一步,它可以允许可访问的模拟时间尺度增加许多数量级。通过自动查找集体变量,我们可以大大简化许多系统的快速研究和比较。该研究建立在扩散图技术的基础上,利用扩散算子的本征函数来表征系统的亚稳态(缓慢变化)状态。自动粗粒度的潜在影响将在合理药物设计等领域受到最深刻的影响,在这些领域中,有必要根据其与某些靶点相互作用的特性来选择特定的药物分子,例如药物分子。一种蛋白质。生物分子模拟依赖于非常专业且高度开发的模拟代码的使用,这些代码是多年开发和政府投资的产物。为了加速这一重要领域新算法的实施和测试,该项目包括在 EPSRC 资助的 MIST(分子积分软件工具)平台内进行软件开发的详细计划。软件方法的测试将通过与化学家和药物化学家的合作进行,包括莱斯大学(德克萨斯州休斯顿)和纪念斯隆凯特琳癌症研究中心(纽约)的研究人员。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Machine Learning Force Fields and Coarse-Grained Variables in Molecular Dynamics: Application to Materials and Biological Systems.
  • DOI:
    10.1021/acs.jctc.0c00355
  • 发表时间:
    2020-08-11
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Gkeka P;Stoltz G;Barati Farimani A;Belkacemi Z;Ceriotti M;Chodera JD;Dinner AR;Ferguson AL;Maillet JB;Minoux H;Peter C;Pietrucci F;Silveira A;Tkatchenko A;Trstanova Z;Wiewiora R;Lelièvre T
  • 通讯作者:
    Lelièvre T
Simplest random walk for approximating Robin boundary value problems and ergodic limits of reflected diffusions
用于逼近 Robin 边值问题和反射扩散的遍历极限的最简单随机游走
Quantifying Configuration-Sampling Error in Langevin Simulations of Complex Molecular Systems
  • DOI:
    10.3390/e20050318
  • 发表时间:
    2018-05-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Fass, Josh;Sivak, David A.;Chodera, John D.
  • 通讯作者:
    Chodera, John D.
Posterior sampling strategies based on discretized stochastic differential equations for machine learning applications
用于机器学习应用的基于离散随机微分方程的后采样策略
TATi-Thermodynamic Analytics ToolkIt: TensorFlow-based software for posterior sampling in machine learning applications
TATi-热力学分析工具包:基于 TensorFlow 的软件,用于机器学习应用中的后验采样
  • DOI:
    10.48550/arxiv.1903.08640
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heber F
  • 通讯作者:
    Heber F
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benedict Leimkuhler其他文献

Asymptotic Error Analysis of the Adaptive Verlet Method
  • DOI:
    10.1023/a:1022313123291
  • 发表时间:
    1999-03-01
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Stéphane Cirilli;Ernst Hairer;Benedict Leimkuhler
  • 通讯作者:
    Benedict Leimkuhler

Benedict Leimkuhler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benedict Leimkuhler', 18)}}的其他基金

SI2-CHE: ExTASY: Extensible Tools for Advanced Sampling and analYsis
SI2-CHE:ExTASY:用于高级采样和分析的可扩展工具
  • 批准号:
    EP/K039512/1
  • 财政年份:
    2013
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Research Grant
Mathematical Sciences: Stabilized Geometric Integrators with Applications to Molecular Simulation
数学科学:稳定几何积分器及其在分子模拟中的应用
  • 批准号:
    9627330
  • 财政年份:
    1997
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Standard Grant
U.S.-German Workshop: Algorithms for Macromolecular Modeling
美德研讨会:高分子建模算法
  • 批准号:
    9603012
  • 财政年份:
    1997
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Standard Grant
Mathematical Sciences Computing Research Environments
数学科学计算研究环境
  • 批准号:
    9628626
  • 财政年份:
    1996
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Standard Grant
Workshop on Algorithms for Macromolecular Modeling, September 30,-October 2, 1994
大分子建模算法研讨会,1994 年 9 月 30 日至 10 月 2 日
  • 批准号:
    9412473
  • 财政年份:
    1994
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Standard Grant
Mathematical Sciences: A Mathematical Computing Laboratory
数学科学:数学计算实验室
  • 批准号:
    9205538
  • 财政年份:
    1992
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Standard Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目

相似海外基金

Understanding the Impact of Outdoor Science and Environmental Learning Experiences Through Community-Driven Outcomes
通过社区驱动的成果了解户外科学和环境学习体验的影响
  • 批准号:
    2314075
  • 财政年份:
    2024
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Continuing Grant
CAREER: CAS: Organic Photochemistry for Light-Driven CO2 Capture and Release
职业:CAS:光驱动二氧化碳捕获和释放的有机光化学
  • 批准号:
    2338206
  • 财政年份:
    2024
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Continuing Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Standard Grant
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
  • 批准号:
    2346707
  • 财政年份:
    2024
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Standard Grant
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
  • 批准号:
    2341994
  • 财政年份:
    2024
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Standard Grant
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
  • 批准号:
    2344109
  • 财政年份:
    2024
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
  • 批准号:
    2402555
  • 财政年份:
    2024
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Standard Grant
Cooperativity Driven Communication through Noncovalent Networks in Biomimetic Systems
仿生系统中通过非共价网络的协作驱动通信
  • 批准号:
    2404149
  • 财政年份:
    2024
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
  • 批准号:
    2331111
  • 财政年份:
    2024
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Standard Grant
CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
  • 批准号:
    2340042
  • 财政年份:
    2024
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了