Exploring Delocalised Energy Transport in Bacterial Reaction Centres

探索细菌反应中心的离域能量传输

基本信息

  • 批准号:
    EP/P010253/1
  • 负责人:
  • 金额:
    $ 12.86万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Photosynthetic organisms such as plants, algae and bacteria, harness the energy from sunlight to drive all downstream processes such as synthesis of carbohydrates, which are essential for cell growth, function, and repair. Reaction centres (RCs) play the pivotal role of accepting energy absorbed by 1000s of light absorbing carotenoid and (bacterio)chlorophyll molecules and use it to induce charge separation, generating electrons (and holes). Electrons are then used to form a vital concentration gradient of protons that drive adenosine triphosphate synthesis. The process of initial light capture in light harvesting antenna, rapid energy transfer between (bacterio)chlorophyll molecules and charge separation in RCs is, remarkably, 100% efficient under low light intensities. Despite many prior studies of RCs, several important factors underling the high yield of chemical charge separation have yet to be directly experimentally determined.RCs of Rhodobacter sphaeroides contain seven tightly packed light absorbing molecules: four bacteriochlorophylls-a, two bacteriopheophytins-a (both bacteriochlorin pigments) and a 15,15'-cis-spheroidene carotenoid moiety. Energy transfer between adjacent RC pigments takes place on ~100 fs timescales (1 fs = one millionth billionth of a second).The rate of energy transfer, which underpins the yield of eventual charge-separation, is dictated by the electronic structure of RCs, and the extent to which photoexcited molecules share electrons (delocalisation). In the regime of spatially separated molecules, the interaction between chormophores is minimal and electrons remain localised on their respective molecules. However, in RCs the distances between pigments ranges between 5 and 10 Angstroms and through inter-molecular interactions electrons can become delocalised over multiple pigments. To date, no experiment has been able to directly measure the delocalisation of RC excited states.Ultrafast laser spectroscopies using pulses of light shorter than the dynamical processes involved can be used to take snapshots of the system and infer the route(s) and associated timescales of energy flow through the system. One such emerging technique, two-dimensional electronic-vibrational spectroscopy will be used to investigate the spatial location of excited states in RCs as a function of time, and transform our knowledge of the inter-molecular interactions and of the RC electronic structure.Carotenoid pigments play a dual role in photosynthesis, acting as both accessory light harvesting pigments and regulatory elements that can protect plants from damage caused by excessive sunlight. In their light harvesting capacity, they can absorb parts of the solar spectrum where (bacterio)chlorophyll absorption is weak. Carotenoids increase the total coverage of the solar spectrum by transferring energy to (bacterio)chlorophyll molecules. The carotenoid to bacteriochlorin energy transfer mechanisms for RCs have not been fully characterised and may involve pathways that have hitherto been ignored. Two-dimensional electronic spectroscopy will be used to follow the energy transfer between carotenoid and different bacteriochlorin pigments, revealing the energy transfer pathways and associated timescales that enhance the light harvesting capability of RCs.The proposed experiments seek to transform our current description of the electronic structure of Rhodobacter sphaeroides RCs and how energy is transferred between constituent light absorbing molecules, preparing the system for one of nature's most efficient charge-carrier generation events. The study will provide key design principles of inter-molecular couplings in RCs, and unravel the blueprint for the efficient energy transduction. These design principles will be key for engineering bio-inspired molecular solar cell technology or water splitting catalysts.
光合生物,如植物、藻类和细菌,利用来自阳光的能量来驱动所有下游过程,如碳水化合物的合成,这是细胞生长、功能和修复所必需的。反应中心(RCs)起着关键作用,它接受数千个吸收光的类胡萝卜素和(细菌)叶绿素分子吸收的能量,并利用它诱导电荷分离,产生电子(和空穴)。然后,电子被用来形成一个重要的质子浓度梯度,驱动三磷酸腺苷的合成。在低光强下,光收集天线的初始光捕获、(细菌)叶绿素分子之间的快速能量转移和RCs中的电荷分离过程具有100%的效率。尽管之前对RCs进行了许多研究,但化学电荷分离高收率的几个重要因素尚未直接通过实验确定。球形红杆菌的RCs包含7个紧密排列的光吸收分子:4个细菌叶绿素-a, 2个细菌叶绿素-a(都是细菌氯色素)和一个15,15′-顺式球状胡萝卜素部分。相邻RC颜料之间的能量转移发生在~ 100fs的时间尺度上(1fs =百万分之一十亿分之一秒)。作为最终电荷分离产量基础的能量转移速率,是由RCs的电子结构以及光激发分子共享电子的程度(离域)决定的。在空间分离分子的情况下,发色团之间的相互作用是最小的,电子仍然定位在各自的分子上。然而,在RCs中,颜料之间的距离在5到10埃之间,通过分子间的相互作用,电子可以在多个颜料上离域。到目前为止,还没有实验能够直接测量RC激发态的离域。使用比所涉及的动力学过程更短的光脉冲的超快激光光谱可以用来拍摄系统的快照,并推断通过系统的能量流的路线和相关的时间尺度。其中一种新兴技术,二维电子振动光谱将用于研究RC中激发态的空间位置作为时间的函数,并改变我们对分子间相互作用和RC电子结构的认识。类胡萝卜素在光合作用中起着双重作用,既是辅助的光收集色素,又是保护植物免受过度阳光伤害的调节因子。在它们的光收集能力中,它们可以吸收(细菌)叶绿素吸收较弱的部分太阳光谱。类胡萝卜素通过将能量传递给(细菌)叶绿素分子来增加太阳光谱的总覆盖范围。RCs的类胡萝卜素到细菌氯的能量转移机制尚未完全表征,可能涉及迄今为止被忽视的途径。二维电子能谱将用于跟踪类胡萝卜素与不同菌氯色素之间的能量转移,揭示增强RCs光收集能力的能量转移途径和相关时间尺度。提出的实验试图改变我们目前对球形红杆菌RCs电子结构的描述,以及能量如何在组成吸收光的分子之间转移,为自然界最有效的载流子产生事件之一做准备。该研究将提供RCs分子间偶联的关键设计原则,并揭示有效能量转导的蓝图。这些设计原则将是工程生物启发分子太阳能电池技术或水分解催化剂的关键。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Photoresponsive Stiff-Stilbene Ligand Fuels the Reversible Unfolding of G-Quadruplex DNA
光响应性二苯乙烯配体促进 G-四链体 DNA 的可逆展开
  • DOI:
    10.1002/ange.201900740
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    O'Hagan M
  • 通讯作者:
    O'Hagan M
Recent advances in multidimensional ultrafast spectroscopy.
  • DOI:
    10.1098/rsos.171425
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Oliver TAA
  • 通讯作者:
    Oliver TAA
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tom Oliver其他文献

Conceptualizing and assessing interpersonal adaptability: towards a functional framework
概念化和评估人际适应性:走向功能框架
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tom Oliver;F. Lievens
  • 通讯作者:
    F. Lievens
Institutional Knowledge at Singapore Management University Interpersonal dynamics in assessment center exercises: Effects of role player portrayed disposition
新加坡管理大学的机构知识 评估中心练习中的人际动态:角色扮演者所描绘性格的影响
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tom Oliver
  • 通讯作者:
    Tom Oliver
Other-Rating and Context-Specific Personality Judgments ofAgreeableness and Extraversion
他人评价和特定情境的宜人性和外向性人格判断
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tom Oliver;D. Powell
  • 通讯作者:
    D. Powell
How can relational, decolonial and feminist approaches inform the EU bioeconomy?
  • DOI:
    10.1007/s11625-024-01613-3
  • 发表时间:
    2025-01-19
  • 期刊:
  • 影响因子:
    5.300
  • 作者:
    Sabaheta Ramcilovic-Suominen;Jacopo Giuntoli;Tom Oliver;Lyla Mehta
  • 通讯作者:
    Lyla Mehta

Tom Oliver的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tom Oliver', 18)}}的其他基金

Developing a robust approach to the monitoring and analysis of insect populations: trends in fly numbers in Québec and implications for insectivores
开发一种强有力的方法来监测和分析昆虫种群:魁北克省苍蝇数量的趋势及其对食虫动物的影响
  • 批准号:
    NE/X007553/1
  • 财政年份:
    2022
  • 资助金额:
    $ 12.86万
  • 项目类别:
    Research Grant
Systemic environmental risk analysis for threats to UK recovery from COVID-19
英国 COVID-19 复苏威胁的系统环境风险分析
  • 批准号:
    NE/V018159/1
  • 财政年份:
    2021
  • 资助金额:
    $ 12.86万
  • 项目类别:
    Research Grant
Optimising multifunctional land-use decisions through robust combined models: a pollination-crop yield-landscape aesthetics case study
通过稳健的组合模型优化多功能土地利用决策:授粉-作物产量-景观美学案例研究
  • 批准号:
    NE/T004029/1
  • 财政年份:
    2019
  • 资助金额:
    $ 12.86万
  • 项目类别:
    Research Grant
VARIABLE RATES OF RESPONSE BY SPECIES TO CLIMATE CHANGE
物种对气候变化的不同反应率
  • 批准号:
    NE/K00378X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 12.86万
  • 项目类别:
    Research Grant

相似海外基金

Into a New Plane - Three-Dimensionally Delocalised Nano-Graphenes
进入新的平面——三维离域纳米石墨烯
  • 批准号:
    EP/V048554/1
  • 财政年份:
    2021
  • 资助金额:
    $ 12.86万
  • 项目类别:
    Research Grant
Macroscopically delocalised quantum states of matter (B07)
物质的宏观离域量子态 (B07)
  • 批准号:
    320105458
  • 财政年份:
  • 资助金额:
    $ 12.86万
  • 项目类别:
    Collaborative Research Centres
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了