Exact solutions for discrete and continuous nonlinear systems

离散和连续非线性系统的精确解

基本信息

  • 批准号:
    EP/P012698/1
  • 负责人:
  • 金额:
    $ 25.84万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

This is a Mathematics proposal in the broad area of Integrable Systems with a focus on exact solutions of nonlinear systems. The area of Integrable Systems started with the remarkable discovery of solitary waves on shallow water, known as solitons, which has changed the paradigm and our understanding of nonlinear phenomena in general. As a mathematical concept, solitons first appeared about 50 years ago when analytical solutions for the Korteweg-de Vries equation, describing shallow water waves, were explicitly constructed by the inverse scattering method. This method were soon applied for many systems, which are important for applications, such as the Nonlinear Schrodinger equation (non-linear optics, modulation instability), sine-Gordon equation (non-linear optics, superconductive Josephson junctions, low-frequency collective motion in proteins and DNA), Heisenberg and Landau-Lifshitz models (in the theory of magnetism) and many others. Over the last decade surprising connections of the soliton theory for the Kadomtsev-Petviashvili (KP) equation with cluster algebras and enumerative geometry have been discovered. The KP equation is used to model shallow water waves on a surface. Its soliton solutions form web structures. Kodama and Williams described them in terms of totally positive Grassmanians. Recently, for systems of partial differential and differential-difference equations we have developed a method for construction of exact solutions based on symmetries of the Lax representations and discovered new classes of solutions, which represent nonlinear wave fronts propagating with constant velocity. It has become clear that the world of solitons is much richer than it has been anticipated. Equipped with this new methodology, we are well prepared to tackle the problem of construction, description and visualisation of exact solutions for basic systems of partial differential and differential-difference equations.The aims of this proposal are highly ambitious. The proposal is divided into four parts corresponding to the four objectives listed above. Each objective can be achieved independently, though they are closely related.
这是在可积系统的广泛领域中的一项数学建议,重点是非线性系统的精确解。可积系统的领域始于浅水上孤立波的显著发现,也就是我们所知的孤子,这改变了我们对一般非线性现象的范式和理解。作为一个数学概念,孤子最早出现在大约50年前,当时描述浅水波的Korteweg-de Vries方程的解析解是用逆散射方法显式构造的。这种方法很快被应用于许多具有重要应用价值的系统,如非线性薛定谔方程(非线性光学,调制不稳定性),Sine-Gordon方程(非线性光学,超导约瑟夫森结,蛋白质和DNA中的低频集体运动),Heisenberg和Landau-Lifshitz模型(在磁理论中)等等。在过去的十年里,Kadomtsev-Petviashvili(KP)方程的孤子理论与团簇代数和计数几何之间有着惊人的联系。用KP方程模拟水面上的浅水波。它的孤子解形成了网状结构。小玉和威廉姆斯用完全积极的格拉斯马尼亚人来描述他们。最近,对于偏微分方程组和微分差分方程组,我们发展了一种基于Lax表示的对称性来构造精确解的方法,并发现了一类新的解,它们代表了以恒速传播的非线性波前。很明显,孤子的世界比人们预期的要丰富得多。有了这套新的方法,我们已准备好处理偏微分方程组和微分差分方程组的精确解的构造、描述和可视化问题。该提案分为四个部分,与上述四项目标相对应。每个目标都可以独立实现,尽管它们是密切相关的。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantisations of the Volterra hierarchy
  • DOI:
    10.1007/s11005-022-01588-1
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Sylvain Carpentier;A. Mikhailov;Jing Ping Wang
  • 通讯作者:
    Sylvain Carpentier;A. Mikhailov;Jing Ping Wang
PreHamiltonian and Hamiltonian operators for differential-difference equations
微分差分方程的前哈密顿算子和哈密顿算子
  • DOI:
    10.1088/1361-6544/ab5912
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Carpentier S
  • 通讯作者:
    Carpentier S
Weakly nonlocal Poisson brackets: Tools, examples, computations
弱非局部泊松括号:工具、示例、计算
Rational Recursion Operators for Integrable Differential-Difference Equations
可积微分方程的有理递归算子
Wave fronts and cascades of soliton interactions in the periodic two dimensional Volterra system
  • DOI:
    10.1016/j.physd.2017.01.003
  • 发表时间:
    2017-05-15
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Bury, Rhys;Mikhailov, Alexander V.;Wang, Jing Ping
  • 通讯作者:
    Wang, Jing Ping
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jing Ping Wang其他文献

Partially integrable nonlinear equations with one higher symmetry
具有更高对称性的部分可积非线性方程
  • DOI:
    10.1088/0305-4470/38/20/l02
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Mikhailov;V. Novikov;Jing Ping Wang
  • 通讯作者:
    Jing Ping Wang
Recursion Operator of the Narita–Itoh–Bogoyavlensky Lattice
  • DOI:
    10.1111/j.1467-9590.2012.00556.x
  • 发表时间:
    2011-11
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Jing Ping Wang
  • 通讯作者:
    Jing Ping Wang
One symmetry does not imply integrability
一种对称性并不意味着可积
  • DOI:
    10.1006/jdeq.1998.3426
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    F. Beukers;J. Sanders;Jing Ping Wang
  • 通讯作者:
    Jing Ping Wang
Hamiltonian and recursion operators for a discrete analogue of the Kaup-Kupershmidt equation
Kaup-Kupershmidt 方程离散模拟的哈密顿量和递归算子
Perturbative Symmetry Approach for Differential–Difference Equations
微分差分方程的微扰对称方法
  • DOI:
    10.1007/s00220-022-04383-0
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    A. Mikhailov;V. Novikov;Jing Ping Wang
  • 通讯作者:
    Jing Ping Wang

Jing Ping Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jing Ping Wang', 18)}}的其他基金

A novel approach to integrability of semi-discrete systems
半离散系统可积性的新方法
  • 批准号:
    EP/V050451/1
  • 财政年份:
    2021
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Research Grant
Structure of partial difference equations with continuous symmetries and conservation laws
具有连续对称性和守恒定律的偏差分方程的结构
  • 批准号:
    EP/I038659/1
  • 财政年份:
    2012
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Research Grant

相似国自然基金

无穷维哈密顿系统的KAM理论
  • 批准号:
    10771098
  • 批准年份:
    2007
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

A Study on Exact Optimal Solutions for Subgroup Identification Based on Discrete Structure Processing
基于离散结构处理的子群辨识精确最优解研究
  • 批准号:
    23K11023
  • 财政年份:
    2023
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computation of Diverse Solutions in Discrete Convex Optimization Problems
离散凸优化问题的多样解的计算
  • 批准号:
    23K10995
  • 财政年份:
    2023
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Special solutions to discrete integrable systems and transcendental numbers
离散可积系统和超越数的特殊解决方案
  • 批准号:
    22K18676
  • 财政年份:
    2022
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Discrete Optimization Solutions for Exam Scheduling
考试安排的离散优化解决方案
  • 批准号:
    553016-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 25.84万
  • 项目类别:
    University Undergraduate Student Research Awards
Virtual Population Obesity Prevention (VPOP) Labs: Computational, Multi-Scale Models for Obesity Solutions
虚拟人口肥胖预防 (VPOP) 实验室:肥胖解决方案的计算、多尺度模型
  • 批准号:
    9982009
  • 财政年份:
    2019
  • 资助金额:
    $ 25.84万
  • 项目类别:
Constructing exact solutions to discrete and ultradiscrete equations by studying combinatorial structure.
通过研究组合结构构建离散和超离散方程的精确解。
  • 批准号:
    17K14199
  • 财政年份:
    2017
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Exact solutions for discrete and continuous nonlinear systems
离散和连续非线性系统的精确解
  • 批准号:
    EP/P012655/1
  • 财政年份:
    2017
  • 资助金额:
    $ 25.84万
  • 项目类别:
    Research Grant
Virtual Population Obesity Prevention (VPOP) Labs: Computational, Multi-Scale Models for Obesity Solutions
虚拟人口肥胖预防 (VPOP) 实验室:肥胖解决方案的计算、多尺度模型
  • 批准号:
    9543517
  • 财政年份:
    2015
  • 资助金额:
    $ 25.84万
  • 项目类别:
A Novel Dose Calculation Method for Targeted Radionuclide Therapy
一种新的放射性核素靶向治疗剂量计算方法
  • 批准号:
    7888739
  • 财政年份:
    2010
  • 资助金额:
    $ 25.84万
  • 项目类别:
A Novel Dose Calculation Method for Targeted Radionuclide Therapy
一种新的放射性核素靶向治疗剂量计算方法
  • 批准号:
    8303411
  • 财政年份:
    2010
  • 资助金额:
    $ 25.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了