Virtual Population Obesity Prevention (VPOP) Labs: Computational, Multi-Scale Models for Obesity Solutions
虚拟人口肥胖预防 (VPOP) 实验室:肥胖解决方案的计算、多尺度模型
基本信息
- 批准号:9982009
- 负责人:
- 金额:$ 53.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdministratorAdultAffectAnthropologyAreaBaltimoreBehaviorBehavioralBehavioral ModelBiologicalBiological ModelsBody Weight ChangesCitiesClinicalCommunitiesComplexComputer SimulationComputer softwareDataData CollectionData SetDecision MakingDevelopmentEating BehaviorEconomic PolicyEconomicsEnvironmentEpidemiologyEquationEventFoodFunding OpportunitiesFutureGeneticGeographic LocationsGlassGoalsHealthHealthcareHigh Performance ComputingIndividualInterventionKinesiologyLeadershipLocationMeasuresMethodologyMethodsModelingNational Institute of Diabetes and Digestive and Kidney DiseasesNew York CityObesityObesity EpidemicOutcomePathway interactionsPhysical activityPhysiologicalPhysiologyPoliciesPolicy MakerPopulationProcessSamplingScienceSocial NetworkSocial SciencesSociologySoftware ToolsSupercomputingSystemTestingThird-Party PayerTranslatingTranslationsUnited StatesUniversitiesUniversity resourcesWorkbasebuilt environmentdesigndiscrete timeeconomic outcomeexperienceexperimental studyfield studyinnovationinsightmarkov modelmetropolitanmodel developmentmodels and simulationmulti-scale modelingmultidisciplinarynext generationnovelnutritionobesity in childrenobesity preventionprogramspublic health relevancesimulationsocial grouptoolvirtualworking group
项目摘要
DESCRIPTION (provided by applicant): The obesity epidemic is a continuing and growing major global multi-scale problem. Designing appropriate policies and interventions has been challenging since obesity is a complex problem, crossing the following six scales: genetic, physiological, individual, group/social network, physical (built) environment, and societal. The overall goal of this proposed project is to develop the Virtual Populations for Obesity Prevention (VPOP), a software platform that can generate an agent-based model encompassing the six obesity- relevant scales of any metropolitan area that can help decision makers to design, evaluate, and test proposed (or existing) obesity interventions and policies. VPOP will bring multiple innovations by (1) being the first model to bring together and integrate the six different
scales that affect obesity; (2) including novel representations of numerous pathways and relationships; (3) leading to new insights and targets for obesity-control policies and interventions; (4) being grounded in an unprecedented breadth and depth of real- world multi-scale obesity-related data; (5) heavily involving decision makers in multi-scale model development to maximize policy-relevancy and translation of VPOP results into useful action; (6) developing new ways of representing and visualizing multi-scale results; and (7) transforming obesity-related data collection and decision making. Our multi-disciplinary team is led by Global Obesity Prevention Center (GOPC), which focuses on developing and implementing multi-scale systems science approaches, methods, and tools to address obesity, and brings together experts from the Pittsburgh Supercomputing Center (PSC)/ Carnegie Mellon University (CMU), Cornell, and the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). The proposed VPOP and our participation in Interagency Modeling and Analysis Group (IMAG), and Multi-scale Modeling Consortium (MSM) activities would substantially leverage our existing GOPC and PSC/CMU resources and efforts. This includes extensive field studies to provide a large and broad data set to help populate, calibrate, and validate the VPOP and forming a Stakeholder Working Group to guide VPOP development, testing, and implementation. Specific Aim 1 will develop VPOP, a platform that can generate a geospatially explicit computational model representing the six obesity-relevant scales for any metropolitan area. Specific Aim 2 will entail utilizing VPOP to generate multi-scale simulation models of two sample metropolitan areas (the Baltimore Metropolitan Statistical Area and New York City) to use to identify the key drivers of obesity in children and adults across the six different scales and determine which factors may be maximally sensitive to specific programs and policies. For Specific Aim 3, we will translate the VPOP- generated models to decision-making by working with key stakeholders, such as city policy makers, health and planning department leadership, healthcare administrators, clinicians, and third-party payers to test and optimize a specific set of obesity-control policies and interventions.
描述(申请人提供):肥胖症的流行是一个持续且日益严重的全球性多尺度问题。由于肥胖症是一个复杂的问题,涉及以下六个层面:遗传、生理、个人、群体/社会网络、物理(建筑)环境和社会,因此设计适当的政策和干预措施具有挑战性。这个拟议项目的总体目标是开发虚拟人口肥胖预防(VPOP),这是一个软件平台,可以生成一个基于代理的模型,包含任何大都市地区与肥胖相关的六个量表,可以帮助决策者设计、评估和测试拟议的(或现有的)肥胖干预措施和政策。VPOP将通过以下方式带来多重创新:(1)成为第一个将六种不同的
这些研究包括:(1)研究影响肥胖的各种尺度;(2)包括许多途径和关系的新表述;(3)为肥胖控制政策和干预措施带来新的见解和目标;(4)以前所未有的广度和深度收集真实世界中与肥胖有关的数据;(5)让决策者大量参与多尺度模型开发,以最大限度地提高政策相关性,并将vPOP结果转化为有用的行动;(6)开发表示和可视化多尺度结果的新方法;以及(7)转变与肥胖相关的数据收集和决策。我们的多学科团队由全球肥胖预防中心(GOPC)领导,该中心专注于开发和实施多尺度系统科学方法、方法和工具来解决肥胖问题,并汇集了来自匹兹堡超级计算中心(PSC)/卡内基梅隆大学(CMU)、康奈尔大学和国家糖尿病、消化和肾脏疾病研究所(NIDDK)的专家。拟议的VPOP以及我们参与机构间建模和分析小组(IMAG)以及多尺度建模联盟(MSM)的活动将极大地利用我们现有的GOPC和PSC/CMU的资源和努力。这包括广泛的实地研究,以提供大量和广泛的数据集,以帮助填充、校准和验证VPOP,并成立一个利益相关者工作组来指导VPOP的开发、测试和实施。具体目标1将开发VPOP,这是一个平台,可以生成一个地理空间上显式的计算模型,代表任何大都市地区与肥胖相关的六个尺度。具体目标2将需要利用VPOP生成两个样本大都会地区(巴尔的摩大都会统计区和纽约市)的多尺度模拟模型,以用于确定六个不同尺度上儿童和成人肥胖的关键驱动因素,并确定哪些因素可能对特定计划和政策最敏感。对于具体目标3,我们将通过与关键利益相关者(如城市政策制定者、卫生和规划部门领导层、医疗管理人员、临床医生和第三方付款人)合作,测试和优化一套特定的肥胖控制政策和干预措施,将VPOP生成的模型转化为决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce Y Lee其他文献
Bruce Y Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce Y Lee', 18)}}的其他基金
Simulating the Spread and Control of Multiple MDROs Across a Network of Different Nursing Homes
模拟多个 MDRO 在不同疗养院网络中的传播和控制
- 批准号:
10549492 - 财政年份:2023
- 资助金额:
$ 53.78万 - 项目类别:
Artificial Intelligence, Modeling, and Informatics for Nutrition Guidance and Systems (AIMINGS) Center
营养指导和系统人工智能、建模和信息学 (AIMINGS) 中心
- 批准号:
10386497 - 财政年份:2022
- 资助金额:
$ 53.78万 - 项目类别:
Project 3: The Virtual Human for Precision Nutrition
项目 3:精准营养虚拟人
- 批准号:
10552681 - 财政年份:2022
- 资助金额:
$ 53.78万 - 项目类别:
Artificial Intelligence, Modeling, and Informatics for Nutrition Guidance and Systems (AIMINGS) Center
营养指导和系统人工智能、建模和信息学 (AIMINGS) 中心
- 批准号:
10552675 - 财政年份:2022
- 资助金额:
$ 53.78万 - 项目类别:
Project 4: Virtual Public Health Precision Nutrition Laboratory
项目4:虚拟公共卫生精准营养实验室
- 批准号:
10386502 - 财政年份:2022
- 资助金额:
$ 53.78万 - 项目类别:
Project 4: Virtual Public Health Precision Nutrition Laboratory
项目4:虚拟公共卫生精准营养实验室
- 批准号:
10552687 - 财政年份:2022
- 资助金额:
$ 53.78万 - 项目类别:
相似海外基金
EAGER: Toward a Decentralized Cross-administrator Zone Management System: Policy and Technology
EAGER:走向去中心化的跨管理员区域管理系统:政策和技术
- 批准号:
2331936 - 财政年份:2023
- 资助金额:
$ 53.78万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: Social Influence in Eyewitness Identification Procedures: Do Blind Administrator Behaviors Magnify the Effects of Suspect Bias?
合作研究:目击者识别程序中的社会影响:盲目的管理员行为是否会放大嫌疑人偏见的影响?
- 批准号:
2043230 - 财政年份:2021
- 资助金额:
$ 53.78万 - 项目类别:
Continuing Grant
COLLABORATIVE RESEARCH: Social Influence in Eyewitness Identification Procedures: Do Blind Administrator Behaviors Magnify the Effects of Suspect Bias?
合作研究:目击者识别程序中的社会影响:盲目的管理员行为是否会放大嫌疑人偏见的影响?
- 批准号:
2043334 - 财政年份:2021
- 资助金额:
$ 53.78万 - 项目类别:
Continuing Grant
Making of the base for patient safety management skill of visiting nurse administrator by the web conference system
利用网络会议系统构建出诊护士管理者患者安全管理技能基础
- 批准号:
19K10768 - 财政年份:2019
- 资助金额:
$ 53.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of the nursing administrator training program to improve leadership behavior focused on emotional intelligence
制定护理管理人员培训计划,以改善以情商为重点的领导行为
- 批准号:
18K17464 - 财政年份:2018
- 资助金额:
$ 53.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Automated Network Management that Dynamically Reflects Administrator Intent
动态反映管理员意图的自动化网络管理
- 批准号:
18K18038 - 财政年份:2018
- 资助金额:
$ 53.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Administrator support perceived as useful for professional growth by novice psychiatric home-visit nursing staff
新手精神科家访护理人员认为管理员支持对专业成长有用
- 批准号:
17H07005 - 财政年份:2017
- 资助金额:
$ 53.78万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
The Facts and Problems on Management of Public Museums: Validation of Designated Administrator System
公共博物馆管理的事实与问题:指定管理员制度的验证
- 批准号:
17K01212 - 财政年份:2017
- 资助金额:
$ 53.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study on Transformation of the School Administrator Preparation and Evaluation System in the United States
美国学校管理人员培养与评价体系转型研究
- 批准号:
26780449 - 财政年份:2014
- 资助金额:
$ 53.78万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The Family Court's Supervision of Property Administrator
家庭法院对财产管理人的监督
- 批准号:
26380108 - 财政年份:2014
- 资助金额:
$ 53.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)