MESO-FRET: MEsoscopic SOlar harvesting via Fluorescence Resonance Energy Transfer

MESO-FRET:通过荧光共振能量转移收集介观太阳能

基本信息

  • 批准号:
    EP/P015395/1
  • 负责人:
  • 金额:
    $ 9.92万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

The development of solar energy solutions, with photovoltaic (PV) technologies in primis, is of strategic importance for the nation and worldwide, since the societal and economical demands constantly grow and we need to eradicate soon our reliance on fossil fuels.In the UK, the renewables sector covers about 11% of the total energy consumption and the government is committing to increase this contribution to 15% by 2020 with a large part that is expected to come from solar power. Meeting this target will require the development of technological solutions with increased energy conversion efficiency and at reduced costs for large scale applications.Solar conversion has a potential that is not being fully exploited yet. Currently used devices, silicon solar cells, have efficiencies limited to 24% and, although already commercialised and available at competitive costs, still suffer from limitations due to the narrow absorption bandwidth and the expensiveness of the solutions adopted to enlarge it, such as use of multi-stacked devices and solar trackers. To make full use of the available potential, in addition to make evolutionary changes to existing PV technologies, new materials for next-generation PVs are needed.This project targets the development of new light harvesting materials, hybrid systems obtained by inexpensive methodologies that can be used in luminescent solar concentrators (LSCs). LSCs are a viable solution and cost-effective complements to semiconductor PVs that can boost the output of solar cells. They contain luminescent dyes that capture sunlight energy over a large area of the device and concentrate it by wave-guide effects to the edges, where a solar cell is interfaced. Each cell is exposed up to 10 times more of the sunlight that hits it, meaning fewer silicon cells with reduced areas and thus reduced costs. At the same time, increasing the incident photon density, LSCs could increase the electrical power obtained from each cell by a factor of over 40 and the conversion efficiencies of solar panels by 50%. Despite their promise, however, the wide use of LSCs has so far been hindered by the lack of suitable emitters that would cover the full solar spectrum, by self-absorption losses that restrict the maximum possible concentration factor and by the short longevity of the optical components that photo-bleach within a few months of prolonged use.The proposed research tackles these limitations and aims at designing new solar 'antennae' for LSCs that possess the key requisites of: (i) panchromaticity, to ensure broadband absorption over the solar spectrum, (ii) high harvesting efficiency, by means of an optimal organisation of the dyes that minimises re-absorption losses and maximises energy concentration through the transfer of the harvested energy by a very fast and efficient process known as FRET (Fluorescence Resonance Energy Transfer), the same that is utilised by natural photosynthetic systems, (iii) durability, by encapsulation into a host-guest structure, to enhance stability against photo-degradation and thermal/mechanical stress, and (iv) cost-effectiveness, to render the technology sustainable, through the use of earth abundant materials and self-assembly strategies, which typically require milder conditions than traditional synthesis.The ambition of this project is to provide a comprehensive approach, where all requirements for efficient light harvesting are met by one material. To enable this, the new antennae are engineered from the molecular scale, using optical components made of earth-abundant elements, and organised into regular structures that reflect the order from the molecular domain to the mesoscopic scale, the space domain up to 1 micron, that is the size of the proposed solar harvesters. Hence, the acronym MESO-FRET.
由于社会和经济需求不断增长,我们需要尽快消除对化石燃料的依赖,以光伏(PV)技术为主导的太阳能解决方案的发展对国家和全世界都具有战略意义。在英国,可再生能源约占总能源消耗的11%,政府承诺到2020年将这一比例提高到15%,其中很大一部分预计将来自太阳能。要实现这一目标,就需要开发技术解决方案,提高能源转换效率,降低大规模应用的成本。太阳能转换的潜力尚未得到充分利用。目前使用的设备,硅太阳能电池,效率限制在24%,尽管已经商业化并以具有竞争力的成本提供,但仍然受到限制,因为吸收带宽狭窄,并且采用昂贵的解决方案来扩大它,例如使用多层堆叠设备和太阳能跟踪器。为了充分利用可用的潜力,除了对现有的光伏技术进行改进外,还需要下一代光伏的新材料。该项目的目标是开发新的光收集材料,通过廉价的方法获得可用于发光太阳能聚光器(LSCs)的混合系统。LSCs是一种可行的解决方案,也是半导体pv的经济有效补充,可以提高太阳能电池的产量。它们含有发光染料,可以捕获设备上大面积的阳光能量,并通过波导效应将其集中到连接太阳能电池的边缘。每个电池暴露的阳光是太阳光的10倍,这意味着更少的硅电池和更小的面积,从而降低了成本。同时,增加入射光子密度,LSCs可以将每个电池获得的电功率提高40倍以上,太阳能电池板的转换效率提高50%。然而,尽管LSCs前景光明,但迄今为止,由于缺乏覆盖整个太阳光谱的合适发射器,自吸收损失限制了最大可能的浓度因子,以及光学元件在长时间使用几个月内光漂白的寿命短,LSCs的广泛使用受到了阻碍。拟议的研究解决了这些限制,旨在为LSCs设计新的太阳能“天线”,该天线具有以下关键条件:(1)全色性,以确保在太阳光谱上的宽带吸收;(2)高收获效率,通过染料的最佳组织,最大限度地减少再吸收损失,并通过一种非常快速有效的过程(称为FRET(荧光共振能量转移))将收获的能量转移到最大程度,这与自然光合作用系统使用的过程相同;(3)耐久性,通过封装到主客体结构中。为了增强抗光降解和热/机械应力的稳定性,以及(iv)成本效益,通过使用地球丰富的材料和自组装策略,使技术可持续,这通常需要比传统合成更温和的条件。该项目的目标是提供一种全面的方法,在这种方法中,一种材料可以满足有效光收集的所有要求。为了实现这一点,新的天线是从分子尺度设计的,使用由地球上丰富的元素制成的光学元件,并组织成规则的结构,反映从分子域到介观尺度的顺序,空间域高达1微米,这是拟议的太阳能收集器的大小。因此,首字母缩略词MESO-FRET。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Circularly polarised luminescence in an RNA-based homochiral, self-repairing, coordination polymer hydrogel.
Synthesis, structure and spectroscopic properties of BODIPY dyes incorporating the pentafluorosulfanylphenyl group
含五氟硫基苯基的 BODIPY 染料的合成、结构及光谱性质
  • DOI:
    10.1039/d3nj00633f
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    James R
  • 通讯作者:
    James R
The search for panchromatic light-harvesting systems: Ternary and binary antennae based on self-organised materials
寻找全色光采集系统:基于自组织材料的三元和二元天线
  • DOI:
    10.1016/j.jphotochem.2020.112872
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Santana Vega M
  • 通讯作者:
    Santana Vega M
Hierarchical self-assembly in an RNA-based coordination polymer hydrogel.
Hybridising inorganic materials with fluorescent BOPHY dyes: A structural and optical comparative study.
  • DOI:
    10.3389/fchem.2022.921112
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fabio Cucinotta其他文献

Bile acid derivatives as novel co-adsorbents for enhanced performance of blue dye-sensitized solar cells
胆汁酸衍生物作为新型共吸附剂用于提高蓝色染料敏化太阳能电池的性能
  • DOI:
    10.1038/s42004-025-01433-1
  • 发表时间:
    2025-03-10
  • 期刊:
  • 影响因子:
    6.200
  • 作者:
    Kezia Sasitharan;Allan J. Mora Abarca;Fabio Cucinotta;Leslie W. Pineda;Victor Hugo Soto Tellini;Marina Freitag
  • 通讯作者:
    Marina Freitag

Fabio Cucinotta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于FRET机制的增强型NIR-II荧光脂质体的设计及其生物应用
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于核素激活TET-FRET双路径能量传递的杂化纳米体系用于肿瘤内照射放射动力-免疫协同治疗的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
利用活细胞超分辨定量FRET成像技术研 究ROCK调控细胞间隧道纳米管形成机制 及其功能
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
基于活细胞FRET显微成像的肝癌治疗药物评价方法
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
基于 FRET 效应的肿瘤微环境激活型近红外二区分子探针 的设计研究
  • 批准号:
    2024JJ6374
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
结合活细胞定量FRET成像技术研究PML调控肿瘤细胞铁死亡的分子机制
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
基于FRET技术探讨cAMP微结构域交互重塑在2型糖尿病相关HFpEF的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
单分子FRET用于DNA折纸阵列中的anti-junction可控机械化 学耦合研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于多路复用FRET技术原位监测h-cyt c磷酸化和糖化以及修饰关系研究
  • 批准号:
    32301060
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
应用于FRET定量成像的高灵敏绿-红荧光蛋白对研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

FRET色素液体ナノ油滴:高感度・高速生体成分検出材料の創出とデバイス応用
FRET染料液体纳米油滴:创建高灵敏、高速生物成分检测材料及器件应用
  • 批准号:
    23K26683
  • 财政年份:
    2024
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
TKI抵抗性CMLに対するエキソーム解析とFRET解析の統合による個別化治療の可能性
通过整合外显子组分析和 FRET 分析对 TKI 耐药 CML 进行个性化治疗的可能性
  • 批准号:
    24K11508
  • 财政年份:
    2024
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of FRET system for screening of PAD-specific inhibitors from periodontopathogenic bacteria.
开发用于从牙周病原菌中筛选 PAD 特异性抑制剂的 FRET 系统。
  • 批准号:
    22KJ2324
  • 财政年份:
    2023
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Single Molecule sensitive CLSM for FLIM FRET
用于 FLIM FRET 的单分子敏感 CLSM
  • 批准号:
    519922049
  • 财政年份:
    2023
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Major Research Instrumentation
An Injectable Glucose Biosensor Based on a Self-cleaning Membrane & NIR FRET Assay
基于自清洁膜的可注射葡萄糖生物传感器
  • 批准号:
    2314639
  • 财政年份:
    2023
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Standard Grant
Multiplex Imaging of Brain Activity and Plasticity with Optimized FRET/FLIM-based Sensors
使用基于 FRET/FLIM 的优化传感器对大脑活动和可塑性进行多重成像
  • 批准号:
    10516813
  • 财政年份:
    2023
  • 资助金额:
    $ 9.92万
  • 项目类别:
Revealing transmembrane conformational signaling through single-molecule FRET
通过单分子 FRET 揭示跨膜构象信号传导
  • 批准号:
    10552414
  • 财政年份:
    2023
  • 资助金额:
    $ 9.92万
  • 项目类别:
Why does the sensitivity of FRET tension sensor differ among tissues? Comprehensive investigation of novel genetically modified mouse tissues
为什么 FRET 张力传感器的灵敏度因组织而异?
  • 批准号:
    23K17194
  • 财政年份:
    2023
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
FRET色素液体ナノ油滴:高感度・高速生体成分検出材料の創出とデバイス応用
FRET染料液体纳米油滴:创建高灵敏、高速生物成分检测材料及器件应用
  • 批准号:
    23H01990
  • 财政年份:
    2023
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
TIRF microscope for single-molecule FRET applications
适用于单分子 FRET 应用的 TIRF 显微镜
  • 批准号:
    512024179
  • 财政年份:
    2022
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Major Research Instrumentation
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了