MESO-FRET: MEsoscopic SOlar harvesting via Fluorescence Resonance Energy Transfer

MESO-FRET:通过荧光共振能量转移收集介观太阳能

基本信息

  • 批准号:
    EP/P015395/1
  • 负责人:
  • 金额:
    $ 9.92万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

The development of solar energy solutions, with photovoltaic (PV) technologies in primis, is of strategic importance for the nation and worldwide, since the societal and economical demands constantly grow and we need to eradicate soon our reliance on fossil fuels.In the UK, the renewables sector covers about 11% of the total energy consumption and the government is committing to increase this contribution to 15% by 2020 with a large part that is expected to come from solar power. Meeting this target will require the development of technological solutions with increased energy conversion efficiency and at reduced costs for large scale applications.Solar conversion has a potential that is not being fully exploited yet. Currently used devices, silicon solar cells, have efficiencies limited to 24% and, although already commercialised and available at competitive costs, still suffer from limitations due to the narrow absorption bandwidth and the expensiveness of the solutions adopted to enlarge it, such as use of multi-stacked devices and solar trackers. To make full use of the available potential, in addition to make evolutionary changes to existing PV technologies, new materials for next-generation PVs are needed.This project targets the development of new light harvesting materials, hybrid systems obtained by inexpensive methodologies that can be used in luminescent solar concentrators (LSCs). LSCs are a viable solution and cost-effective complements to semiconductor PVs that can boost the output of solar cells. They contain luminescent dyes that capture sunlight energy over a large area of the device and concentrate it by wave-guide effects to the edges, where a solar cell is interfaced. Each cell is exposed up to 10 times more of the sunlight that hits it, meaning fewer silicon cells with reduced areas and thus reduced costs. At the same time, increasing the incident photon density, LSCs could increase the electrical power obtained from each cell by a factor of over 40 and the conversion efficiencies of solar panels by 50%. Despite their promise, however, the wide use of LSCs has so far been hindered by the lack of suitable emitters that would cover the full solar spectrum, by self-absorption losses that restrict the maximum possible concentration factor and by the short longevity of the optical components that photo-bleach within a few months of prolonged use.The proposed research tackles these limitations and aims at designing new solar 'antennae' for LSCs that possess the key requisites of: (i) panchromaticity, to ensure broadband absorption over the solar spectrum, (ii) high harvesting efficiency, by means of an optimal organisation of the dyes that minimises re-absorption losses and maximises energy concentration through the transfer of the harvested energy by a very fast and efficient process known as FRET (Fluorescence Resonance Energy Transfer), the same that is utilised by natural photosynthetic systems, (iii) durability, by encapsulation into a host-guest structure, to enhance stability against photo-degradation and thermal/mechanical stress, and (iv) cost-effectiveness, to render the technology sustainable, through the use of earth abundant materials and self-assembly strategies, which typically require milder conditions than traditional synthesis.The ambition of this project is to provide a comprehensive approach, where all requirements for efficient light harvesting are met by one material. To enable this, the new antennae are engineered from the molecular scale, using optical components made of earth-abundant elements, and organised into regular structures that reflect the order from the molecular domain to the mesoscopic scale, the space domain up to 1 micron, that is the size of the proposed solar harvesters. Hence, the acronym MESO-FRET.
随着社会和经济需求的不断增长,我们需要尽快消除对化石燃料的依赖,因此,以光伏(PV)技术为基础的太阳能解决方案的开发对国家和全球具有战略重要性。在英国,可再生能源部门占总能源消耗的11%左右,政府承诺将这一比例提高到15%。到2020年,预计其中很大一部分将来自太阳能。要实现这一目标,就需要开发出提高能源转换效率、降低大规模应用成本的技术解决方案。太阳能转换的潜力尚未得到充分开发。目前使用的设备,硅太阳能电池,效率限制在24%,虽然已经商业化并以有竞争力的成本获得,但由于吸收带宽窄和扩大它所采用的解决方案的昂贵性,例如使用多堆叠设备和太阳能跟踪器,仍然受到限制。为了充分利用现有的潜力,除了对现有的光伏技术进行渐进式变革外,还需要新材料用于下一代光伏。该项目的目标是开发新的集光材料,通过廉价的方法获得可用于发光太阳能聚光器(LSC)的混合系统。LSC是一种可行的解决方案,是半导体PV的经济有效的补充,可以提高太阳能电池的输出。它们含有发光染料,可以在设备的大面积上捕获太阳能,并通过波导效应将其集中到太阳能电池连接的边缘。每个电池暴露的阳光是照射它的阳光的10倍,这意味着面积减少的硅电池更少,从而降低了成本。同时,增加入射光子密度,LSC可以将每个电池获得的电力增加40倍以上,太阳能电池板的转换效率提高50%。然而,尽管LSC有希望,但到目前为止,LSC的广泛使用受到缺乏覆盖整个太阳光谱的合适发射器的阻碍,由于限制最大可能的聚集因子的自吸收损耗以及由于光致发光的光学部件的短寿命,这项拟议中的研究解决了这些限制,旨在为LSC设计新的太阳能“天线”,关键字:(i)全色性,以确保在太阳光谱上的宽带吸收,(ii)高收集效率,通过染料的最佳组织,通过被称为FRET的非常快速和有效的过程转移收集的能量,使再吸收损失最小化并使能量集中最大化(荧光共振能量转移),与天然光合系统所利用的相同,(iii)耐久性,通过包封到主-客体结构中,提高对光降解和热/机械应力的稳定性,以及(iv)成本效益,通过使用地球上丰富的材料和自组装策略,使技术可持续发展,这通常需要比传统合成更温和的条件。其中一种材料满足有效光捕获的所有要求。为了实现这一点,新的天线是从分子尺度设计的,使用由地球上丰富的元素制成的光学元件,并组织成规则的结构,反映从分子域到介观尺度的顺序,空间域高达1微米,这是拟议的太阳能收集器的大小。因此,缩写为MESO-FRET。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Circularly polarised luminescence in an RNA-based homochiral, self-repairing, coordination polymer hydrogel.
Synthesis, structure and spectroscopic properties of BODIPY dyes incorporating the pentafluorosulfanylphenyl group
含五氟硫基苯基的 BODIPY 染料的合成、结构及光谱性质
  • DOI:
    10.1039/d3nj00633f
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    James R
  • 通讯作者:
    James R
Hierarchical self-assembly in an RNA-based coordination polymer hydrogel.
The search for panchromatic light-harvesting systems: Ternary and binary antennae based on self-organised materials
寻找全色光采集系统:基于自组织材料的三元和二元天线
  • DOI:
    10.1016/j.jphotochem.2020.112872
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Santana Vega M
  • 通讯作者:
    Santana Vega M
Hybridising inorganic materials with fluorescent BOPHY dyes: A structural and optical comparative study.
  • DOI:
    10.3389/fchem.2022.921112
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fabio Cucinotta其他文献

Bile acid derivatives as novel co-adsorbents for enhanced performance of blue dye-sensitized solar cells
胆汁酸衍生物作为新型共吸附剂用于提高蓝色染料敏化太阳能电池的性能
  • DOI:
    10.1038/s42004-025-01433-1
  • 发表时间:
    2025-03-10
  • 期刊:
  • 影响因子:
    6.200
  • 作者:
    Kezia Sasitharan;Allan J. Mora Abarca;Fabio Cucinotta;Leslie W. Pineda;Victor Hugo Soto Tellini;Marina Freitag
  • 通讯作者:
    Marina Freitag

Fabio Cucinotta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于FRET机制的增强型NIR-II荧光脂质体的设计及其生物应用
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于核素激活TET-FRET双路径能量传递的杂化纳米体系用于肿瘤内照射放射动力-免疫协同治疗的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
利用活细胞超分辨定量FRET成像技术研 究ROCK调控细胞间隧道纳米管形成机制 及其功能
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
基于活细胞FRET显微成像的肝癌治疗药物评价方法
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
基于 FRET 效应的肿瘤微环境激活型近红外二区分子探针 的设计研究
  • 批准号:
    2024JJ6374
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
结合活细胞定量FRET成像技术研究PML调控肿瘤细胞铁死亡的分子机制
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
基于FRET技术探讨cAMP微结构域交互重塑在2型糖尿病相关HFpEF的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
单分子FRET用于DNA折纸阵列中的anti-junction可控机械化 学耦合研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于多路复用FRET技术原位监测h-cyt c磷酸化和糖化以及修饰关系研究
  • 批准号:
    32301060
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
应用于FRET定量成像的高灵敏绿-红荧光蛋白对研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

FRET色素液体ナノ油滴:高感度・高速生体成分検出材料の創出とデバイス応用
FRET染料液体纳米油滴:创建高灵敏、高速生物成分检测材料及器件应用
  • 批准号:
    23K26683
  • 财政年份:
    2024
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
TKI抵抗性CMLに対するエキソーム解析とFRET解析の統合による個別化治療の可能性
通过整合外显子组分析和 FRET 分析对 TKI 耐药 CML 进行个性化治疗的可能性
  • 批准号:
    24K11508
  • 财政年份:
    2024
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multiplex Imaging of Brain Activity and Plasticity with Optimized FRET/FLIM-based Sensors
使用基于 FRET/FLIM 的优化传感器对大脑活动和可塑性进行多重成像
  • 批准号:
    10516813
  • 财政年份:
    2023
  • 资助金额:
    $ 9.92万
  • 项目类别:
Development of FRET system for screening of PAD-specific inhibitors from periodontopathogenic bacteria.
开发用于从牙周病原菌中筛选 PAD 特异性抑制剂的 FRET 系统。
  • 批准号:
    22KJ2324
  • 财政年份:
    2023
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
An Injectable Glucose Biosensor Based on a Self-cleaning Membrane & NIR FRET Assay
基于自清洁膜的可注射葡萄糖生物传感器
  • 批准号:
    2314639
  • 财政年份:
    2023
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Standard Grant
Single Molecule sensitive CLSM for FLIM FRET
用于 FLIM FRET 的单分子敏感 CLSM
  • 批准号:
    519922049
  • 财政年份:
    2023
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Major Research Instrumentation
Revealing transmembrane conformational signaling through single-molecule FRET
通过单分子 FRET 揭示跨膜构象信号传导
  • 批准号:
    10552414
  • 财政年份:
    2023
  • 资助金额:
    $ 9.92万
  • 项目类别:
Why does the sensitivity of FRET tension sensor differ among tissues? Comprehensive investigation of novel genetically modified mouse tissues
为什么 FRET 张力传感器的灵敏度因组织而异?
  • 批准号:
    23K17194
  • 财政年份:
    2023
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
FRET色素液体ナノ油滴:高感度・高速生体成分検出材料の創出とデバイス応用
FRET染料液体纳米油滴:创建高灵敏、高速生物成分检测材料及器件应用
  • 批准号:
    23H01990
  • 财政年份:
    2023
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
TIRF microscope for single-molecule FRET applications
适用于单分子 FRET 应用的 TIRF 显微镜
  • 批准号:
    512024179
  • 财政年份:
    2022
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Major Research Instrumentation
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了