A Reconstruction Toolkit for Multichannel CT

多通道 CT 重建工具包

基本信息

  • 批准号:
    EP/P02226X/1
  • 负责人:
  • 金额:
    $ 64.43万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Currently, conventional Computed Tomographic (CT) imaging is still in a black and white (1 channel) era, just as it was with the first image Rontgen captured in 1895! Conventional X-ray imaging entails a polychromatic X-ray source (i.e. with a full spectrum of energies) but with energy-indiscriminate detectors (registering a single grey-scale channel). However, technological breakthroughs in energy-sensitive detectors enable a new era of tomographic imaging in 'colours' (multiple channels). Each pixel of the energy-selective detector records a spectrum consisting of hundreds or thousands of energy channels. Currently available software only allows us to reconstruct each (noisy) channel independently in turn, which is a significant limitation. We need to unlock the power of next-generation correlative reconstruction methods for multi-channel tomography. Notably, the registered energy channels are mutually correlated, just like the red-green-blue (RGB) channels of the color image. Therefore, noise and other inaccuracies in spectral measurements can be treated holistically across the channels, leading to massive improvements in imaging quality (higher signal-to-noise ratio and resolution) in addition to fundamentally new opportunities such as spectroscopic imaging, i.e., direct decomposition into fundamental elements. The overall goal of this CCP Software Flagship project is to expand upon existing single-channel image reconstruction software (already developed by the CCPi project) to enable sophisticated multi-channel correlative reconstruction methods. A novel Reconstruction Toolkit for Multichannel CT (RT-MCT) will be developed and become a part of the end-user data pipeline Savu (a modular Python-based platform for tomographic data processing developed at Diamond Light Source (DLS) at Harwell, UK). Three major imaging facilities are key collaborators and committed initial users of the RT-MCT: 1) Manchester X-ray Imaging Facility (MXIF) is a leader of laboratory-based X-ray CT imaging and has developed the unique multi-channel instrument "The Colour Bay" (cone-beam geometry scanner which uses HEXITEC hyper-spectral detectors); 2) A new national Neutron Imaging and Diffraction Facility (IMAT) at the ISIS pulsed neutron spallation source (Harwell). IMAT will take advantage of the neutron time-of-flight (TOF) measurement technique for effective energy discrimination into thousands of channels making this unique technique hyper-spectral; 3) Diamond Light Source (DLS), the national synchrotron facility at Harwell, has a number of imaging beamlines including I18 and I14, dedicated to X-ray fluorescence, X-ray spectroscopy and diffraction, all of which entail multi-channel data sets.The main aim is to deliver the RT-MCT to these facilities to provide much more efficient data reconstruction and analysis. Several work packages are identified which constitute the RT-MCT, namely a) accurate mathematical modelling of multi-channel imaging; b) formulation of optimal reconstruction problems; c) efficient algorithm implementation and integration in existing software framework; d) deployment to facilities and use in proof-of-concept case studies.
目前,传统的计算机断层扫描(CT)成像仍然处于黑白(1通道)时代,就像1895年伦琴根拍摄的第一张图像一样!传统的x射线成像需要多色x射线源(即具有全光谱的能量),但需要能量不分青红皂白的探测器(记录单个灰度通道)。然而,能量敏感探测器的技术突破开启了“彩色”(多通道)层析成像的新时代。能量选择探测器的每个像素记录由数百或数千个能量通道组成的光谱。目前可用的软件只允许我们依次独立地重建每个(有噪声的)信道,这是一个显著的限制。我们需要释放下一代多通道断层扫描相关重建方法的力量。值得注意的是,注册的能量通道是相互相关的,就像彩色图像的红绿蓝(RGB)通道一样。因此,光谱测量中的噪声和其他不准确性可以通过通道整体处理,从而大大提高成像质量(更高的信噪比和分辨率),并从根本上带来新的机会,例如光谱成像,即直接分解为基本元素。CCP软件旗舰项目的总体目标是扩展现有的单通道图像重建软件(已经由CCPi项目开发),以实现复杂的多通道相关重建方法。一种新型的多通道CT重建工具包(RT-MCT)将被开发,并成为最终用户数据管道Savu的一部分(Savu是由英国Harwell的Diamond Light Source (DLS)开发的基于python的层摄影数据处理模块化平台)。三大主要成像设施是RT-MCT的关键合作者和忠实的初始用户:1)曼彻斯特x射线成像设施(MXIF)是实验室x射线CT成像的领导者,并开发了独特的多通道仪器“the Colour Bay”(使用HEXITEC超光谱探测器的锥形光束几何扫描仪);2)在ISIS脉冲中子散裂源上新建的国家中子成像和衍射设备(IMAT) (Harwell)。IMAT将利用中子飞行时间(TOF)测量技术对数千个通道进行有效的能量识别,使这种独特的技术成为超光谱技术;3)钻石光源(DLS),位于哈维尔的国家同步加速器设施,有许多成像光束线,包括I18和I14,专门用于x射线荧光,x射线光谱和衍射,所有这些都需要多通道数据集。主要目标是将RT-MCT交付给这些设施,以提供更有效的数据重建和分析。确定了构成RT-MCT的几个工作包,即a)多通道成像的精确数学建模;B)最优重构问题的表述;C)在现有软件框架下高效的算法实现和集成;D)部署到设施和在概念验证案例研究中使用。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analyzing Reconstruction Artifacts from Arbitrary Incomplete X-ray CT Data
分析任意不完整 X 射线 CT 数据的重建伪影
  • DOI:
    10.1137/18m1166833
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Borg, Leise;Frikel, Jürgen;Jørgensen, Jakob Sauer;Quinto, Eric Todd
  • 通讯作者:
    Quinto, Eric Todd
Nonlinear problems in fast tomography
快速断层扫描中的非线性问题
  • DOI:
    10.1117/12.2275194
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Coban S
  • 通讯作者:
    Coban S
Crystalline phase discriminating neutron tomography using advanced reconstruction methods
  • DOI:
    10.1088/1361-6463/ac02f9
  • 发表时间:
    2021-08-12
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Ametova, Evelina;Burca, Genoveva;Withers, Philip J.
  • 通讯作者:
    Withers, Philip J.
Laminography in the lab: imaging planar objects using a conventional x-ray CT scanner
  • DOI:
    10.1088/1361-6501/aafcae
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Fisher, S. L.;Holmes, D. J.;Withers, P. J.
  • 通讯作者:
    Withers, P. J.
Monte Carlo reconstruction: a concept for propagating uncertainty in computed tomography
蒙特卡洛重建:计算机断层扫描中传播不确定性的概念
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philip Withers其他文献

Dependence of dielectric behavior in BiFeO3 ceramics on intrinsic defects
BiFeO3 陶瓷介电行为对固有缺陷的依赖性
  • DOI:
    10.1016/j.jallcom.2012.06.110
  • 发表时间:
    2012-11
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Hua Ke;Wen Wang;Yuanbin Wang;Hongjun Zhang;Dechang Jia;Yu Zhou;Xuekun Lu;Philip Withers
  • 通讯作者:
    Philip Withers

Philip Withers的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philip Withers', 18)}}的其他基金

RELIANCE: REaL-tIme characterization of ANisotropic Carbon-based tEchnological fibres, films and composites
可靠性:各向异性碳基技术纤维、薄膜和复合材料的实时表征
  • 批准号:
    EP/X026884/1
  • 财政年份:
    2023
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Research Grant
Manufacturing by Design
设计制造
  • 批准号:
    EP/W003333/1
  • 财政年份:
    2022
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Research Grant
Henry Royce Institute Core Capital Award
亨利·莱斯研究所核心资本奖
  • 批准号:
    EP/X52850X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Research Grant
Royce Phase 2
罗伊斯二期
  • 批准号:
    EP/X527257/1
  • 财政年份:
    2022
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Research Grant
Tomographic Imaging: UK Collaborative Computational Projects
断层成像:英国协作计算项目
  • 批准号:
    EP/T026677/1
  • 财政年份:
    2020
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Research Grant
The Royce: Capitalising on the investment
罗伊斯:利用投资
  • 批准号:
    EP/S019367/1
  • 财政年份:
    2018
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Research Grant
Preventing Surface Degradation in Demanding Environments
防止严苛环境中的表面退化
  • 批准号:
    EP/R00496X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Research Grant
Sir Henry Royce InsStitute - recurrent grant
亨利·莱斯爵士学院 - 经常性资助
  • 批准号:
    EP/R00661X/1
  • 财政年份:
    2016
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Research Grant
Tomographic Imaging
断层成像
  • 批准号:
    EP/M022498/1
  • 财政年份:
    2015
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Research Grant
Next Generation Multi-Dimensional X-Ray Imaging
下一代多维 X 射线成像
  • 批准号:
    EP/M010619/1
  • 财政年份:
    2015
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Research Grant

相似海外基金

Smart Cues Toolkit: Supporting Physical Activity at Home with Interactive Contextual Cues
智能提示工具包:通过交互式上下文提示支持家庭体育活动
  • 批准号:
    EP/X036766/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Research Grant
SCC-PG WECAN Smart Toolkit: Wellbeing Enhancement through Crowd-sourced Assessment of Neighborhood-infrastructure
SCC-PG WECAN 智能工具包:通过社区基础设施众包评估增强福祉
  • 批准号:
    2332339
  • 财政年份:
    2024
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Standard Grant
A genomic toolkit to future-proof the seaweed industry
面向未来的海藻行业的基因组工具包
  • 批准号:
    IE230100464
  • 财政年份:
    2024
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Early Career Industry Fellowships
Generative AI toolkit to enforce regulatory requirements and enable capacity for increased corporate transparency.
生成式人工智能工具包,用于执行监管要求并提高企业透明度。
  • 批准号:
    10098889
  • 财政年份:
    2024
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Collaborative R&D
Building an epidemiological modelling toolkit for epidemic preparedness
构建流行病学建模工具包以做好流行病防范
  • 批准号:
    MR/Z503939/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Research Grant
An enhanced toolkit for Botrytis control in protected cropping
保护性种植中灰霉病控制的增强工具包
  • 批准号:
    BB/Z514755/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Research Grant
IP23-006 VIMP: A Discourse-Aware, Community-Informed Toolkit to Predict Virality and Impact of Vaccine Misinformation Contents
IP23-006 VIMP:一个具有话语感知、社区知情的工具包,用于预测疫苗错误信息内容的病毒性和影响
  • 批准号:
    10762193
  • 财政年份:
    2024
  • 资助金额:
    $ 64.43万
  • 项目类别:
Multipurpose Electronics Toolkit using Suspended Membranes: towards Systems on Nothing
使用悬浮膜的多用途电子工具包:走向无源系统
  • 批准号:
    EP/Y000196/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Research Grant
400 Million Years of Food Transport in Plants: unearthing the origin, diversity and genetic toolkit of vasculature
植物中 4 亿年的食物运输:挖掘脉管系统的起源、多样性和遗传工具包
  • 批准号:
    MR/Y03399X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Fellowship
OAC Core: A Scalable and Deployable Container Orchestration Cyber Infrastructure Toolkit for Deploying Big Data Analytics Applications in Public Cloud
OAC Core:用于在公共云中部署大数据分析应用程序的可扩展和可部署的容器编排网络基础设施工具包
  • 批准号:
    2313738
  • 财政年份:
    2023
  • 资助金额:
    $ 64.43万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了