A Portable Electrohydrodynamic Device for in-situ Production of Multi-Layered Drug-Loaded Meshes
用于原位生产多层载药网的便携式电流体动力装置
基本信息
- 批准号:EP/P022677/1
- 负责人:
- 金额:$ 64.44万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research describes a novel engineering approach to point-of-need delivery of controlled release medications for wound and burn treatment, based on an innovative portable device which allows in situ generation of nano-/micro fibrous meshes. These fibres can contain multiple layers of active pharmaceutical ingredients (APIs) in a core-shell configuration (potentially up to at least four layers), allowing compartmentalisation of agents ranging from proteins to low molecular weight antibiotics and including innovative therapeutic oligosaccharides. Nano- and microfibres with compartmentalised structures are currently attracting a great deal of interest within the drug delivery arena due to the advantages of high surface area, high fluid permeation, ready separation of incompatible drugs into physically distinct environments, the ability to tune drug release rates via incorporation into controlled release polymers and the physical flexibility and versatility of the macroscopic mesh structure. Furthermore, given recent emphasis on combination therapies, the possibility of generating compartmentalised systems using, for example, coaxial and multi-axial electrohydrodynamic (EHD) technology is highly attractive. One example of such an application is the treatment of wounds and burns, whereby the flexibility of shape of the meshes to neatly fill the lesion, the high fluid permeation of the mesh facilitating tissue regrowth, the tunable release of therapeutic agents and the biodegradation of the mesh are all perfectly feasible attributes that would render a drug-loaded nanofibre approach highly advantageous. A further possibility, not yet realised in practice, is the generation of micro/nanofibres in situ at the point of trauma. Were this to be possible, then valuable time to treatment would be saved as agents designed to stop bleeding, prevent infection, reduce pain or promote healing could be administered quickly in a form which could be applied to a wide range of lesion architectures and areas. Indeed, a portable system could also be used in conflict situations, for patients with mobility difficulties being treated at home for conditions such as diabetic ulcer or for otherwise medically inaccessible regions such as refugee camps, while the use of biodegradable polymer bases would allow the mesh to simply be resorbed over a period of time without damage to the lesion associated with dressing removal. Moreover, the capability to generate highly permeable microfibrous meshes at point-of-need enables an alternative nasal route for sustained and controlled drug release when oral/intravenous drug delivery is rendered impractical during emergencies where the patient may be unconscious with poor vein access (e.g. heroin overdose) or may even be having a seizure (e.g. status epilepticus). Overall, therefore, a 'field' system for simple and inexpensive administration of complex drug-loaded fibre meshes would have huge patient benefit for a wide range of conditions and would represent a significant breakthrough in engineering-led therapeutic development. Clearly, however, such a system would present a series of profound engineering challenges. Despite recent advances in fibre production technology, the generation of fibres with compartmentalised systems requires bulky, expensive (>£20k), bench-top high voltage supply and syringe pumps that are confined to a laboratory or factory environment. Developing a portable, hand-held, cheaper (<£2k), miniature EHD device that can generate multilayered therapeutic materials could revolutionise the practical applicability of micro/nanofibres. We believe, based on our work to date, that such an approach is now possible and the project outlined here, which focuses on the engineering issues associated with the development of our prototype device and the challenges of drug incorporation, would lay the foundation for the use of this approach in a wide range of therapeutic applications.
拟议的研究描述了一种新的工程方法,用于伤口和烧伤治疗的控释药物的需要点输送,基于一种创新的便携式设备,该设备允许原位生成纳米/微米纤维网。这些纤维可以包含多层的活性药物成分(API),呈核-壳结构(可能高达至少四层),允许对从蛋白质到低分子量抗生素的试剂进行区室化,包括创新的治疗性寡糖。由于高表面积、高流体渗透性、将不相容的药物容易地分离到物理上不同的环境中、通过掺入控释聚合物中调节药物释放速率的能力以及宏观网状结构的物理柔性和多功能性的优点,具有分隔结构的纳米和微米纤维目前在药物递送竞技场中吸引了大量的兴趣。此外,考虑到最近对组合疗法的重视,使用例如同轴和多轴电流体动力学(EHD)技术产生区室化系统的可能性是非常有吸引力的。这种应用的一个实例是治疗伤口和烧伤,由此网状物形状的灵活性以整齐地填充病变,网状物的高流体渗透性促进组织再生,治疗剂的可调释放和网状物的生物降解都是完全可行的属性,这将使载药纳米纤维方法非常有利。在实践中尚未实现的另一种可能性是在创伤点原位产生微米/纳米纤维。如果这是可能的,那么将节省宝贵的治疗时间,因为设计用于止血、预防感染、减轻疼痛或促进愈合的药剂可以以可以应用于广泛的病变结构和区域的形式快速施用。事实上,便携式系统也可用于冲突情况,用于在家中治疗糖尿病溃疡等疾病的行动困难患者,或用于难民营等医疗无法到达的地区,而使用可生物降解的聚合物基底将允许网状物在一段时间内简单地被再吸收,而不会损坏与敷料移除相关的病变。此外,在紧急情况下,当口服/静脉内药物递送变得不切实际时,在需要时产生高度可渗透的微纤维网的能力使得能够实现用于持续和受控药物释放的替代鼻腔途径,在紧急情况下,患者可能因静脉通路不良而失去知觉(例如海洛因过量)或甚至可能癫痫发作(例如癫痫持续状态)。因此,总的来说,用于简单且廉价地施用复杂的载药纤维网的“现场”系统将对广泛的病症具有巨大的患者益处,并且将代表工程主导的治疗开发的重大突破。然而,显然,这样的系统将带来一系列深刻的工程挑战。尽管最近在纤维生产技术方面取得了进展,但用分隔系统生产纤维需要体积庞大、昂贵(> 2万英镑)的台式高压电源和注射泵,这些高压电源和注射泵仅限于实验室或工厂环境。开发一种便携式,手持式,更便宜(<2k英镑),微型EHD设备,可以产生多层治疗材料,可以彻底改变微/纳米纤维的实用性。我们相信,根据我们迄今为止的工作,这种方法现在是可能的,这里概述的项目,重点是与我们的原型设备的开发相关的工程问题和药物掺入的挑战,将为在广泛的治疗应用中使用这种方法奠定基础。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Inexpensive, Portable Device for Point-of-Need Generation of Silver-Nanoparticle Doped Cellulose Acetate Nanofibers for Advanced Wound Dressing
- DOI:10.1002/mame.201700586
- 发表时间:2018-05-01
- 期刊:
- 影响因子:3.9
- 作者:Brako, Francis;Luo, Chaojie;Edirisinghe, Mohan
- 通讯作者:Edirisinghe, Mohan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Duncan Craig其他文献
Taste masking of isoniazid by hot melt extrusion and spray drying – A comparative study
- DOI:
10.1016/j.ijpharm.2016.06.095 - 发表时间:
2016-09-25 - 期刊:
- 影响因子:
- 作者:
Alison Keating;Duncan Craig;Catherine Tuleu;Claire Forbes;Barry Aldous;Min Zhao - 通讯作者:
Min Zhao
Duncan Craig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Duncan Craig', 18)}}的其他基金
Innovative gel aid for administering tablets to stroke and other dysphagic patients
创新的凝胶辅助剂,用于给中风和其他吞咽困难患者服用药片
- 批准号:
G0902184/1 - 财政年份:2010
- 资助金额:
$ 64.44万 - 项目类别:
Research Grant
相似海外基金
Innovative Electrohydrodynamic Atomisation for Improved Nasal Drug Delivery
创新的电流体动力雾化改善鼻腔药物输送
- 批准号:
DP240101559 - 财政年份:2024
- 资助金额:
$ 64.44万 - 项目类别:
Discovery Projects
I-Corps: Non-gravity and Anti-gravity Electrohydrodynamic Inkjet Printing of Electronics
I-Corps:电子产品的非重力和反重力电流体动力喷墨打印
- 批准号:
2331363 - 财政年份:2023
- 资助金额:
$ 64.44万 - 项目类别:
Standard Grant
Soft robot control based on electrohydrodynamic mechatronics
基于电流体动力机电一体化的软体机器人控制
- 批准号:
22KJ2740 - 财政年份:2023
- 资助金额:
$ 64.44万 - 项目类别:
Grant-in-Aid for JSPS Fellows
A comprehensive numerical model for the electrohydrodynamic flow generated by gas discharges and its application to simulate, design and optimize practical devices and processes
气体放电产生的电流体动力流的综合数值模型及其在模拟、设计和优化实际装置和过程中的应用
- 批准号:
RGPIN-2022-04480 - 财政年份:2022
- 资助金额:
$ 64.44万 - 项目类别:
Discovery Grants Program - Individual
Scale effects on electrohydrodynamic conduction pumping
电流体动力传导泵的尺度效应
- 批准号:
21K14075 - 财政年份:2021
- 资助金额:
$ 64.44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Electrohydrodynamic interactions of drops
液滴的电流体动力学相互作用
- 批准号:
2126498 - 财政年份:2021
- 资助金额:
$ 64.44万 - 项目类别:
Standard Grant
Visualization and evaluation of electrohydrodynamic effects of gas-liquid two-phase fluid with weakly ionized plasma
弱电离等离子体气液两相流体电流体动力学效应的可视化和评估
- 批准号:
20K04273 - 财政年份:2020
- 资助金额:
$ 64.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multi-Scale Multi-Material Printing of 3D Bead Arrays via Self-Focused Electrohydrodynamic Jets
通过自聚焦电流体动力喷射进行 3D 珠阵列的多尺度多材料打印
- 批准号:
1934350 - 财政年份:2020
- 资助金额:
$ 64.44万 - 项目类别:
Standard Grant
Multi-scale Nanotextured Surfaces by Tribo-Electrohydrodynamic Lithography for Controlled Drug Release
通过摩擦电流体动力光刻实现多尺度纳米纹理表面以控制药物释放
- 批准号:
1760348 - 财政年份:2018
- 资助金额:
$ 64.44万 - 项目类别:
Standard Grant
Current-modulated Electrohydrodynamic (EHD) Jet Printing with Dual-channel Nozzles for Micro/Nano-Fabrication
用于微/纳米制造的双通道喷嘴电流调制电流体动力 (EHD) 喷射打印
- 批准号:
1726627 - 财政年份:2017
- 资助金额:
$ 64.44万 - 项目类别:
Standard Grant