Surface Engineering Solid State Dye-Sensitized Solar Cells
表面工程固态染料敏化太阳能电池
基本信息
- 批准号:EP/P030068/1
- 负责人:
- 金额:$ 43.97万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Dye-sensitized solar cells (DSC) can be described as a form of "artificial photosynthesis" because, in both cases, light is harvested by a pigment (chlorophyll in photosynthesis or a synthetic dye in DSC). This is interesting because photosynthesis is ~5% efficient in terms of the incident light energy (i.e. photons) captured to the energy in the photosynthetic by-products. Despite this apparently low efficiency, photosynthesis has supported the planet's biosphere for aeons. One reason for this is the huge amount of sunlight which reaches the Earth's surface every day. This has been estimated to be ~6,000x more than annual global energy consumption despite the growing global population using huge amounts of energy. Given that the sun will last for billions more years, sunlight is vastly more abundant than any other energy source currently available. In this context, if we use 10% efficient PV, using only 0.2% of the Earth's surface would meet energy demands whilst releasing only trace greenhouse gases during production and none during operation. This will slow the accelerating pace of fossil fuel related climate change.Whilst PV uptake has increased hugely recently (~11GW in UK and >225GW globally), this still represents a tiny fraction of current energy demand; the question is why? Crystalline Si PV currently dominates the market (~90%) but is heavy, rigid and is usually made from batch-like processes into limited product forms (rectangular, encapsulated, glass panels). And despite these products being available for many years, they are still bolted onto frames attached onto existing roofs with wires often running across open roof-space. They do not fit, they are a "bolt-on" solution.This research will develop PV which can be printed by continuous (roll-to-roll, R2R) processing. Because R2R is faster than batch processing, it will reduce manufacturing costs but increase the amount of product which can be made. R2R product can also be made to any length or width which will revolutionise PV product form. Perhaps most importantly, by varying the PV substrate, this will enable PV to be fully integrated into roof/wall panels or windows. This will drastically reduce installation and balance of systems costs (i.e. PV panel mounting system, DC/AC power inverters, wiring, switches, battery storage) which make up almost half of the cost of most PV installations. DSC technology is already in commercial production (www.gcell.co.uk) and is already known to be suitable for R2R processing. In addition, DSC raw materials are non-toxic and abundant. Whilst DSC device lifetimes >25,000h have been reported (equivalent to ~25y operation), the liquid electrolytes used can leak and are corrosive to some metals which increases substrate costs. This proposal will exchange this liquid electrolyte for a solid, charge carrier to make solid state DSC (ssDSC) devices to avoid these issues. Whilst ssDSC have been made before, it has been difficult to control their construction because this involves depositing 2 thin layers of different chemicals onto porous metal oxide particles in a porous film. The resulting inconsistent layer coverage causes energy losses which limits device efficiency. To overcome this, we will use self-assembling molecules and computer modelling to explore surface chemistry/structure to speed-up the research. Thus, we will design dyes and charge carriers to behave like "self-parking cars in a car park" and move to the correct position before fixing themselves in place. Then, by controlling the self-assembly process, we will add multiple dyes into the device to increase light harvesting to improve device efficiency to reduce pay-back times; i.e. the time when the customer has saved enough money on their energy bills to pay off the system purchase costs. By combining computer modelling and experiment, we will cut design to manufacture times up to 10-fold by reducing the number of material modification cycles required.
染料敏化太阳能电池(DSC)可以被描述为“人工光合作用”的一种形式,因为在这两种情况下,光都是由色素(光合作用中的叶绿素或DSC中的合成染料)收集的。这是有趣的,因为光合作用在入射光能(即光子)捕获到光合副产物中的能量方面的效率约为5%。尽管光合作用的效率明显很低,但它已经支撑了地球生物圈的亿万年。其中一个原因是每天到达地球表面的大量阳光。据估计,这比全球每年的能源消耗量高出约6,000倍,尽管全球人口不断增长,使用大量能源。考虑到太阳还将持续数十亿年,阳光比目前可用的任何其他能源都要丰富得多。在这种情况下,如果我们使用效率为10%的光伏发电,仅使用地球表面的0.2%就可以满足能源需求,同时在生产过程中只释放微量温室气体,而在运行过程中则不会释放。这将减缓与化石燃料相关的气候变化的加速步伐。虽然光伏吸收最近大幅增加(英国约11吉瓦,全球> 225吉瓦),但这仍然只占当前能源需求的一小部分;问题是为什么?晶体硅光伏目前主导市场(约90%),但重量大,刚性强,通常通过批量工艺制成有限的产品形式(矩形,封装,玻璃面板)。尽管这些产品已经上市多年,但它们仍然用螺栓固定在现有屋顶上的框架上,电线经常穿过开放的屋顶空间。他们不适合,他们是一个“螺栓”的解决方案。这项研究将开发PV,可以打印的连续(卷到卷,R2 R)处理。由于R2 R比批处理更快,它将降低制造成本,但增加了可以生产的产品数量。R2 R产品还可以制成任何长度或宽度,这将彻底改变光伏产品的形式。也许最重要的是,通过改变PV基板,这将使PV能够完全集成到屋顶/墙板或窗户中。这将大大降低安装和平衡系统成本(即光伏板安装系统,DC/AC电源逆变器,布线,开关,电池存储),这些成本几乎占大多数光伏安装成本的一半。DSC技术已经在商业化生产中(www.gcell.co.uk),并且已知适用于R2 R加工。此外,DSC原料无毒且丰富。虽然已经报道了DSC装置寿命>25,000 h(相当于约25年操作),但是所使用的液体电解质可能泄漏并且对一些金属具有腐蚀性,这增加了基板成本。该提案将这种液体电解质交换为固体电荷载体,以制造固态DSC(ssDSC)器件,以避免这些问题。虽然ssDSC之前已经制备,但难以控制它们的构造,因为这涉及将2个不同化学品的薄层沉积到多孔膜中的多孔金属氧化物颗粒上。由此产生的不一致的层覆盖导致能量损失,这限制了器件效率。为了克服这个问题,我们将使用自组装分子和计算机建模来探索表面化学/结构,以加快研究速度。因此,我们将设计染料和电荷载体,使其表现得像“在停车场自动停放的汽车”,并在固定到位之前移动到正确的位置。然后,通过控制自组装过程,我们将向设备中添加多种染料,以增加光捕获,从而提高设备效率,从而减少回报时间;即客户在能源账单上节省了足够的钱来支付系统购买成本的时间。通过将计算机建模和实验相结合,我们将通过减少所需的材料修改周期数,将设计到制造的时间缩短10倍。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rapid, 5 min, low temperature aqueous platinization for plastic substrates for dye-sensitized solar cells
- DOI:10.1016/j.mlblux.2018.100001
- 发表时间:2019-03
- 期刊:
- 影响因子:0
- 作者:P. Holliman;A. Fattori;R. Anthony;Udaya Ketipearacchi;A. Connell;M. L. Davies;Eurig W Jones
- 通讯作者:P. Holliman;A. Fattori;R. Anthony;Udaya Ketipearacchi;A. Connell;M. L. Davies;Eurig W Jones
Double Linker Triphenylamine Dyes for Dye-Sensitized Solar Cells
- DOI:10.3390/en13184637
- 发表时间:2020-09
- 期刊:
- 影响因子:3.2
- 作者:P. Holliman;M. Mohsen;A. Connell;Christopher P. Kershaw;D. Meza-Rojas;Eurig W Jones;Dawn Geatches
- 通讯作者:P. Holliman;M. Mohsen;A. Connell;Christopher P. Kershaw;D. Meza-Rojas;Eurig W Jones;Dawn Geatches
Low temperature sintering of aqueous TiO2 colloids for flexible, co-sensitized dye-sensitized solar cells
用于柔性共敏化染料敏化太阳能电池的水性二氧化钛胶体的低温烧结
- DOI:10.1016/j.matlet.2018.10.118
- 发表时间:2019
- 期刊:
- 影响因子:3
- 作者:Holliman P
- 通讯作者:Holliman P
Controlled and permanent induced Fermi shifts and upwards band bending in ZnO nanorods by surface stripping with argon bombardment
通过氩轰击表面剥离控制 ZnO 纳米棒中的永久诱导费米位移和向上能带弯曲
- DOI:10.1016/j.matlet.2021.130288
- 发表时间:2021
- 期刊:
- 影响因子:3
- 作者:Barnett C
- 通讯作者:Barnett C
Synthesis of SOT-OH and its application as a building block for the synthesis of new dimeric and trimeric Spiro-OMeTAD materials
- DOI:10.1039/d2me00038e
- 发表时间:2022-04-28
- 期刊:
- 影响因子:3.6
- 作者:Cariello, Michele;Pant, Namrata;Cooke, Graeme
- 通讯作者:Cooke, Graeme
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter James Holliman其他文献
Peter James Holliman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter James Holliman', 18)}}的其他基金
Self-assembling Perovskite Absorbers - Cells Engineered into Modules (SPACE-Modules)
自组装钙钛矿吸收器 - 电池设计成模块(SPACE-Modules)
- 批准号:
EP/M015254/2 - 财政年份:2017
- 资助金额:
$ 43.97万 - 项目类别:
Research Grant
Self-assembling Perovskite Absorbers - Cells Engineered into Modules (SPACE-Modules)
自组装钙钛矿吸收器 - 电池设计成模块(SPACE-Modules)
- 批准号:
EP/M015254/1 - 财政年份:2015
- 资助金额:
$ 43.97万 - 项目类别:
Research Grant
Increasing Photocurrents in Biosolar Cells using Microporous Electrodes - A Feasibility Study
使用微孔电极增加生物太阳能电池中的光电流 - 可行性研究
- 批准号:
EP/F062168/1 - 财政年份:2008
- 资助金额:
$ 43.97万 - 项目类别:
Research Grant
Metal substrate mounted flexible dye sensitised semiconductor solar cells
金属基板安装柔性染料敏化半导体太阳能电池
- 批准号:
EP/E03585X/1 - 财政年份:2007
- 资助金额:
$ 43.97万 - 项目类别:
Research Grant
相似国自然基金
Frontiers of Environmental Science & Engineering
- 批准号:51224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21024805
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
SpyTCR-RBNP - Engineering a highly targeted and biocompatible drug delivery system for solid cancer treatment
SpyTCR-RBNP - 设计用于实体癌症治疗的高度针对性和生物相容性的药物输送系统
- 批准号:
10095606 - 财政年份:2024
- 资助金额:
$ 43.97万 - 项目类别:
Collaborative R&D
Electrolyte and interface engineering of solid-state sodium batteries
固态钠电池电解质及界面工程
- 批准号:
DP240102926 - 财政年份:2024
- 资助金额:
$ 43.97万 - 项目类别:
Discovery Projects
Engineering Biology for the Treatment of Solid Tumours : Enhancing T Cell Function and Longevity in the Tumour Microenvironment for Improved Cancer Immunotherapy
治疗实体瘤的工程生物学:增强肿瘤微环境中的 T 细胞功能和寿命,以改善癌症免疫治疗
- 批准号:
10074648 - 财政年份:2023
- 资助金额:
$ 43.97万 - 项目类别:
Grant for R&D
CAREER: Microstructural Engineering of Solid Composite Electrolytes through Process Manipulation
职业:通过工艺操纵进行固体复合电解质的微观结构工程
- 批准号:
2237878 - 财政年份:2023
- 资助金额:
$ 43.97万 - 项目类别:
Standard Grant
RII Track-4:NSF: Rational Design and Engineering of Composite Electrolytes for All-solid-state Li-S Batteries
RII Track-4:NSF:全固态锂硫电池复合电解质的合理设计与工程
- 批准号:
2229305 - 财政年份:2023
- 资助金额:
$ 43.97万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: CRYO: Engineering Atomically Thin Magnetic Materials for Efficient Solid-State Cooling at Cryogenic Temperatures
EAGER/合作研究:CRYO:工程原子薄磁性材料,可在低温下进行高效固态冷却
- 批准号:
2233592 - 财政年份:2023
- 资助金额:
$ 43.97万 - 项目类别:
Standard Grant
Monitoring thermal conductance of solid-liquid interface in engineering fluids
监测工程流体中固液界面的热导率
- 批准号:
2849956 - 财政年份:2023
- 资助金额:
$ 43.97万 - 项目类别:
Studentship
EAGER/Collaborative Research: CRYO: Engineering Atomically Thin Magnetic Materials for Efficient Solid-State Cooling at Cryogenic Temperatures
EAGER/合作研究:CRYO:工程原子薄磁性材料,可在低温下进行高效固态冷却
- 批准号:
2233375 - 财政年份:2023
- 资助金额:
$ 43.97万 - 项目类别:
Standard Grant
Engineering next generation supercharged CAR T-cells against solid tumors
设计下一代增强 CAR T 细胞来对抗实体瘤
- 批准号:
10698970 - 财政年份:2023
- 资助金额:
$ 43.97万 - 项目类别:
Quantum interface engineering with solid-state spins and photons
固态自旋和光子的量子界面工程
- 批准号:
2742534 - 财政年份:2022
- 资助金额:
$ 43.97万 - 项目类别:
Studentship