Flexible and stretchable force sensor for static and dynamic measurements (FlexFo)

用于静态和动态测量的柔性可拉伸力传感器 (FlexFo)

基本信息

  • 批准号:
    EP/R003610/1
  • 负责人:
  • 金额:
    $ 12.86万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Force sensing plays a key technological role in providing tactile feedback in automated systems thus maximising efficiency in industrial applications (i.e., pick-and-place robots, robotic welding) and enabling novel devices and applications (i.e., video games controllers and smart homes). Now that human-oriented technologies (i.e., electronic and robotic skins, prosthetics, surgical robotic arms and rehabilitative devices, force-sensitive buttons on smartphones) are becoming a ubiquitous part of daily life, the requirement for improved force sensors is self-evident. Sensors that mimic human tactile receptors have been developed. However, the existing devices do not satisfy technological needs of flexibility, stretch-ability, high force and spatial resolution, self-powering and adaptability to measure both static and dynamic forces. Therefore, new forms of sensor are essential and this research programme aims to tackle this technological need by proposing a new transformative device featuring a force sensitive flexible and stretchable material with embedded well-aligned and ordered nanowires (a smart nanocomposite material). The smart nanocomposite is made using a unique and innovative approach that involves filling a polymer with well-ordered and aligned high aspect ratio nanowires (well-defined geometrical shape with length much greater than width). This approach differentiates substantially from the usual conservative methods where low aspect ratio nanoparticles (imperfect spherical shapes) are randomly dispersed and distributed into polymers. In this way, the transformative strategy of organising the nanowires in well-ordered patterns will overcome the disadvantages and limitations of present sensors such as low area/force/position resolution, limited functionality (measuring either static or dynamic forces) and low adaptability to different applications (flexible but not stretchable).The intrinsic discrete particle aspect and piezoelectric nature of the nanowires enables sensor operation in a combined resistive and piezoelectric functionality and thus enables both static and dynamics force measurements with the same device. The device will be driven with low DC bias voltage (low power consumption and zero-power when operating in "piezoelectric mode"), and will provide modularity, flexibility and stretch-ability for optimal surface conformability (i.e., adaptability to a wide range of systems and geometries). The sensor prototypes will be tested against commercially available sensors and their force resolution, flexibility, stretch-ability and reliability will be compared under different bending conditions. In summary, the research programme has three main objectives: to create a combined resistive and piezoelectric smart nanocomposite; use the smart nanocomposite to develop a flexible and stretchable force sensor for both static and dynamic measurements; and to test and compare the developed devices against commercially available sensors.The research will benefit those fields in which force sensing is needed (static, dynamic, impact force measurements). The first targeted application will involve integration of the devices into robotic arms to provide tactile feedback. However, the proposed approach of developing a smart nanocomposite that will enhance the performance of a sensing device has the potential to revolutionise the force sensing market, greatly improve current applications (i.e. robotics) and target novel applications including force sensing on humans (grippers, hands/feet sensors), smart clothes for healthcare and fashion, sports equipment and gadgets (currently limited solely to position or acceleration sensing).
力感测在自动化系统中提供触觉反馈从而最大化工业应用中的效率(即,拾取和放置机器人,机器人焊接)并实现新颖的装置和应用(即,视频游戏控制器和智能家居)。现在,以人为本的技术(即,电子和机器人皮肤、假肢、手术机器人手臂和康复设备、智能手机上的力敏按钮)正在成为日常生活中无处不在的一部分,对改进的力传感器的需求是不言而喻的。已经开发出模仿人类触觉感受器的传感器。然而,现有的装置不能满足柔性、拉伸能力、高力和空间分辨率、自供电以及测量静态力和动态力的适应性的技术需求。因此,新形式的传感器是必不可少的,这项研究计划旨在通过提出一种新的变革性设备来解决这一技术需求,该设备具有力敏感的柔性和可拉伸材料,嵌入了排列良好和有序的纳米线(智能纳米复合材料)。智能纳米复合材料是使用一种独特的创新方法制成的,该方法涉及用有序和对齐的高纵横比纳米线(长度远大于宽度的明确几何形状)填充聚合物。这种方法与通常的保守方法有很大的区别,在保守方法中,低纵横比的纳米颗粒(不完美的球形)被随机分散和分布到聚合物中。以这种方式,以有序图案组织纳米线的变革策略将克服现有传感器的缺点和限制,例如低面积/力/位置分辨率,有限的功能(测量静态或动态力)和对不同应用的适应性低(柔性但不可拉伸)纳米线的固有离散颗粒方面和压电性质使得传感器能够以组合的电阻和压电功能操作,并且因此使得能够实现静态力和动态力两者。使用同一设备进行测量。该装置将以低DC偏置电压(当在“压电模式”下操作时,低功耗和零功率)驱动,并且将提供模块化、柔性和拉伸能力以实现最佳表面适形性(即,对各种系统和几何形状的适应性)。传感器原型将与市售传感器进行测试,并在不同的弯曲条件下比较其力分辨率、灵活性、拉伸能力和可靠性。总之,该研究计划有三个主要目标:创建一个组合的电阻和压电智能纳米复合材料;使用智能纳米复合材料开发一个灵活的和可拉伸的力传感器,用于静态和动态测量;并测试和比较开发的设备与商业上可用的传感器。该研究将有利于那些领域的力传感是必要的(静态,动态,冲击力测量)。第一个目标应用将涉及将设备集成到机器人手臂中以提供触觉反馈。然而,提出的开发智能纳米复合材料的方法,将提高传感设备的性能,有可能彻底改变力传感市场,大大改善目前的应用,(即机器人)和目标的新应用,包括对人类的力感测(抓取器,手/脚传感器),用于医疗保健和时尚的智能服装,运动设备和小工具(目前仅限于位置或加速度传感)。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Zinc oxide nanowires-based flexible force sensor
基于氧化锌纳米线的柔性力传感器
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wood G.S
  • 通讯作者:
    Wood G.S
PDMS-ZnO Piezoelectric Nanocomposites for Pressure Sensors.
  • DOI:
    10.3390/s21175873
  • 发表时间:
    2021-08-31
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jeronimo K;Koutsos V;Cheung R;Mastropaolo E
  • 通讯作者:
    Mastropaolo E
Fabrication and modal characterisation of large-area polymer membranes for acoustic micro-electromechanical systems devices
用于声学微机电系统器件的大面积聚合物膜的制造和模态表征
  • DOI:
    10.1049/mnl.2018.0089
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Camellini L
  • 通讯作者:
    Camellini L
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Enrico Mastropaolo其他文献

Widely tunable MEMS ring resonator with electrothermal actuation and piezoelectric sensing for filtering applications
  • DOI:
    10.1016/j.sna.2015.02.023
  • 发表时间:
    2015-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Boris Sviličić;Enrico Mastropaolo;Rebecca Cheung
  • 通讯作者:
    Rebecca Cheung
Fabrication of beam resonators from hot-wall chemical vapour deposited SiC
  • DOI:
    10.1016/j.mee.2008.11.016
  • 发表时间:
    2009-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Enrico Mastropaolo;Rebecca Cheung;Anne Henry;Erik Janzén
  • 通讯作者:
    Erik Janzén
Piezo-electrically actuated and sensed silicon carbide ring resonators
  • DOI:
    10.1016/j.mee.2012.03.008
  • 发表时间:
    2012-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Enrico Mastropaolo;Boris Sviličić;Tao Chen;Brian Flynn;Rebecca Cheung
  • 通讯作者:
    Rebecca Cheung

Enrico Mastropaolo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Manufacturing of Solid Particle-Liquid Metal Mixtures for Soft Robotics and Stretchable Electronics
职业:制造用于软机器人和可拉伸电子产品的固体颗粒-液体金属混合物
  • 批准号:
    2339780
  • 财政年份:
    2024
  • 资助金额:
    $ 12.86万
  • 项目类别:
    Standard Grant
CAREER: Autonomous, Rapid Self-Healing and Ultra-Stretchable Electronic Polymer Research & Education for Outreach and Student Success in STEM
职业:自主、快速自愈和超可拉伸电子聚合物研究
  • 批准号:
    2305282
  • 财政年份:
    2023
  • 资助金额:
    $ 12.86万
  • 项目类别:
    Continuing Grant
Stretchable Coils for Low-Field, Portable MRI
用于低场便携式 MRI 的可拉伸线圈
  • 批准号:
    10724525
  • 财政年份:
    2023
  • 资助金额:
    $ 12.86万
  • 项目类别:
Solvent-induced phase segregation for low hysteresis printed stretchable strain sensor
低滞后印刷可拉伸应变传感器的溶剂诱导相分离
  • 批准号:
    23K13806
  • 财政年份:
    2023
  • 资助金额:
    $ 12.86万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Stretchable Light-Emitting Polymers with Thermally Activated Delayed Fluorescence
职业:具有热激活延迟荧光的可拉伸发光聚合物
  • 批准号:
    2239618
  • 财政年份:
    2023
  • 资助金额:
    $ 12.86万
  • 项目类别:
    Continuing Grant
Laser-induced graphene composites-based standalone stretchable sweat sensing system for remote health monitoring
基于激光诱导石墨烯复合材料的独立可拉伸汗液传感系统,用于远程健康监测
  • 批准号:
    2309323
  • 财政年份:
    2023
  • 资助金额:
    $ 12.86万
  • 项目类别:
    Standard Grant
Engineering of Stretchable Neural Interfaces Using Liquid Metals for Stable Electrical Communication and Adaptive Stiffness Transformation
使用液态金属实现稳定电通信和自适应刚度变换的可拉伸神经接口工程
  • 批准号:
    10666925
  • 财政年份:
    2023
  • 资助金额:
    $ 12.86万
  • 项目类别:
Development of Intrinsically Stretchable Transistor and Elucidation of Their Device Physics
本质可拉伸晶体管的发展及其器件物理原理的阐明
  • 批准号:
    23KJ1467
  • 财政年份:
    2023
  • 资助金额:
    $ 12.86万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Stretchable, flexible and transparent electronic materials
可拉伸、柔性、透明的电子材料
  • 批准号:
    RGPIN-2017-06319
  • 财政年份:
    2022
  • 资助金额:
    $ 12.86万
  • 项目类别:
    Discovery Grants Program - Individual
Ultrasoft and Highly Stretchable Electronics for Better Healthcare
超柔软且高度可拉伸的电子产品可改善医疗保健
  • 批准号:
    RGPIN-2022-05039
  • 财政年份:
    2022
  • 资助金额:
    $ 12.86万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了