Multi-Domain Virtual Prototyping Techniques for Wide-Bandgap Power Electronics

宽带隙电力电子的多域虚拟样机技术

基本信息

  • 批准号:
    EP/R004390/1
  • 负责人:
  • 金额:
    $ 137.52万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Power electronics is a key component in a low-carbon future, enabling energy-efficient conversion and control solutions for a wide variety of energy and transportation applications. Power electronics technology enables electric and hybrid vehicles, it is the underpinning technology for the next generation of fuel-efficient "More Electric" Aircraft, and is essential for the operation of high speed rail services. It allows connection of renewable energy sources to the national grid and allows us to more efficiently use the electricity distribution networks we have. In summary, it has the potential to allow almost all electrical devices to become smaller, lighter or more efficient.Until recently, power electronic systems have been based around Silicon transistors but inherent limitations of these devices present a limit to how small, light and efficient a power electronic enabled system can be. Next generation power electronics will utilise Wide Bandgap (WBG) power transistors, made from materials such as Silicon Carbide (SiC) and Gallium Nitride (GaN) which are able to overcome the limitations of Silicon. This is achieved by having transistors that can operate at much higher frequencies, operate at higher voltages and higher temperatures, and dissipate less of the power they process as heat. The problem is that our current understanding and experience of power electronic system design is derived from Silicon systems, and that the design of Silicon systems is less critical to achieving optimal performance. To fully exploit the potential of WBG based systems we must understand the challenges posed by the more extreme operating range of WBG devices, and tailor system designs accordingly. High frequency operation means that the electromagnetic design of systems is critical, to avoid unreliable power electronic systems and to prevent power electronic systems affecting other devices through electromagnetic emissions. High frequency operation also theoretically allows the reduction in size of passive filter components (inductors and capacitors) which can significantly reduce system size and weight (increased power density), however the behaviour of smaller passive components operating at higher frequencies is difficult to predict and they can suffer from thermal management problems. High power density power electronic systems, with WBG semiconductors able to operate at higher temperatures place increased thermal stresses on packaging and interconnection methods that were originally developed to deal with Silicon based systems, and this can adversely affect system reliability. An optimal WBG based system design must consider how component choice, system geometry and construction techniques affects each of these challenges, but as the challenges are coupled, any changes to a design to try to solve one problem can cause new problems in another area. Effects such as electromagnetic interference and reliability are also notoriously difficult to predict with extensive experience, and the behaviour of the wide-bandgap semiconductors themselves is different to their Silicon counterparts.This research will develop the tools that power electronic system designers need to be able to design optimal WBG systems, right-first-time, on a computer - Virtual Prototyping. This will allow faster design times, as fewer physical prototypes must be built, and it will allow engineers with Silicon system experience to quickly develop high performance WBG systems. We will do this by developing mathematical techniques that can be applied to predict how a potential system will behave in the electromagnetic, thermal, mechanical, reliability and semiconductor domains. These techniques will then be combined into a proof-of-concept design tool that will be demonstrated on real wide-bandgap systems developed at the partner institutions, and through parallel work in the linked CA, RHM, and HI projects.
电力电子是低碳未来的关键组成部分,为各种能源和运输应用提供节能转换和控制解决方案。电力电子技术使电动和混合动力汽车成为可能,它是下一代节能“更多电动”飞机的基础技术,也是高速铁路服务运营的关键。它允许可再生能源连接到国家电网,并使我们能够更有效地使用我们拥有的配电网络。总而言之,它有潜力使几乎所有的电气设备变得更小、更轻或更高效。直到最近,电力电子系统一直基于硅晶体管,但这些器件的固有局限性限制了电力电子启用系统的小型、轻型和高效程度。下一代电力电子将采用宽带隙(WBG)功率晶体管,由碳化硅(SiC)和氮化镓(GaN)等材料制成,能够克服硅的局限性。这是通过使晶体管可以在更高的频率下工作,在更高的电压和更高的温度下工作,并且将更少的功率作为热量耗散。问题是,我们目前对电力电子系统设计的理解和经验来自硅系统,硅系统的设计对实现最佳性能并不重要。为了充分利用基于WBG的系统的潜力,我们必须了解WBG设备的更极端的工作范围所带来的挑战,并相应地定制系统设计。高频运行意味着系统的电磁设计至关重要,以避免不可靠的电力电子系统,并防止电力电子系统通过电磁辐射影响其他设备。高频操作理论上还允许减小无源滤波器组件(电感器和电容器)的尺寸,这可以显著减小系统尺寸和重量(增加功率密度),然而,在较高频率下操作的较小无源组件的行为难以预测,并且它们可能遭受热管理问题。高功率密度电力电子系统,WBG半导体能够在更高的温度下工作,对最初开发用于处理硅基系统的封装和互连方法施加了增加的热应力,这可能会对系统可靠性产生不利影响。基于WBG的最佳系统设计必须考虑组件选择,系统几何形状和施工技术如何影响这些挑战中的每一个,但由于这些挑战是相互关联的,因此试图解决一个问题的设计的任何变化都可能导致另一个领域的新问题。众所周知,电磁干扰和可靠性等效应很难通过丰富的经验来预测,而且宽带隙半导体本身的行为与硅半导体不同。这项研究将开发电力电子系统设计人员所需的工具,以便能够在计算机上首次设计出最佳的WBG系统-虚拟原型。这将允许更快的设计时间,因为必须构建更少的物理原型,并且它将允许具有硅系统经验的工程师快速开发高性能WBG系统。我们将通过开发数学技术来实现这一目标,这些技术可以应用于预测潜在系统在电磁,热,机械,可靠性和半导体领域的行为。然后,这些技术将被组合成一个概念验证设计工具,将在合作机构开发的真实的宽带隙系统上进行演示,并通过在相关的CA,RHM和HI项目中的并行工作进行演示。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Real-Time Electromagnetic Visualisation for Large 3D Accelerated Models
大型 3D 加速模型的实时电磁可视化
  • DOI:
    10.1109/compel53829.2022.9830033
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jalal B
  • 通讯作者:
    Jalal B
Implementation of Multi-Expansion Point Model Order Reduction for Coupled PEEC-Semiconductor Simulations
PEEC-半导体耦合仿真多展开点模型降阶的实现
  • DOI:
    10.1109/dmc55175.2022.9906539
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Blakaj V
  • 通讯作者:
    Blakaj V
Silicon Carbide n-IGBTs: Structure Optimization for Ruggedness Enhancement
碳化硅 n-IGBT:结构优化以增强耐用性
Behavioural SiC IGBT Modelling Using Non-Linear Voltage and Current Dependent Capacitances
使用非线性电压和电流相关电容进行 SiC IGBT 行为建模
  • DOI:
    10.1109/dmc58182.2023.10412584
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Almpanis I
  • 通讯作者:
    Almpanis I
Magnetic material modelling using the PEEC method and linear basis functions
使用 PEEC 方法和线性基函数进行磁性材料建模
  • DOI:
    10.1109/dmc55175.2022.9906541
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Blakaj V
  • 通讯作者:
    Blakaj V
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Evans其他文献

小瀬甫庵著『年代紀略』の出版と改訂
Hoan Kose 着的《Jishikiryaku》的出版和修订
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    今井由美子;Paul Evans;平岩葉子;米田信子;岩本篤志;Toshiaki TAMAKI;宮川卓也;柳沢昌紀
  • 通讯作者:
    柳沢昌紀
Synthesis and optimisation of <em>P</em><sub>3</sub> substituted vinyl sulfone-based inhibitors as anti-trypanosomal agents
  • DOI:
    10.1016/j.bmc.2020.115774
  • 发表时间:
    2020-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    William Doherty;Nikoletta Adler;Thomas J. Butler;Andrew J.S. Knox;Paul Evans
  • 通讯作者:
    Paul Evans
Three-dimensional X-ray Imaging for Security Screening
  • DOI:
    10.1057/palgrave.sj.8340188
  • 发表时间:
    2005-01-01
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Paul Evans
  • 通讯作者:
    Paul Evans
Synthesis of <em>trans</em>-vaccenic acid and <em>cis</em>-9-<em>trans</em>-11-conjugated linoleic acid
  • DOI:
    10.1016/j.tet.2006.03.006
  • 发表时间:
    2006-05-15
  • 期刊:
  • 影响因子:
  • 作者:
    Patricia E. Duffy;Sonia M. Quinn;Helen M. Roche;Paul Evans
  • 通讯作者:
    Paul Evans
1799 RADIATION EXPOSURE FROM RENAL MASS PROTOCOL CT: WHAT IS THE IMPACT OF BODY HABITUS?
  • DOI:
    10.1016/j.juro.2013.02.2849
  • 发表时间:
    2013-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Matvey Tsivian;Michael Abern;Peter Qi;John Yoo;Paul Evans;Charles Kim;Thomas Polascik;Michael Ferrandino
  • 通讯作者:
    Michael Ferrandino

Paul Evans的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Evans', 18)}}的其他基金

Real-time Virtual Prototypes for the Power Electronics Supply Chain
电力电子供应链的实时虚拟原型
  • 批准号:
    EP/X024377/1
  • 财政年份:
    2023
  • 资助金额:
    $ 137.52万
  • 项目类别:
    Research Grant
ENDOTHELIAL GATA4 IN ATHEROSCLEROSIS PROGRESSION
内皮 GATA4 在动脉粥样硬化进展中的作用
  • 批准号:
    MR/W00366X/2
  • 财政年份:
    2023
  • 资助金额:
    $ 137.52万
  • 项目类别:
    Research Grant
SBIR Phase II: Development of a Flow Battery Using Common Materials and Proprietary Electrolytes
SBIR 第二阶段:使用通用材料和专有电解质开发液流电池
  • 批准号:
    2240504
  • 财政年份:
    2023
  • 资助金额:
    $ 137.52万
  • 项目类别:
    Cooperative Agreement
ENDOTHELIAL GATA4 IN ATHEROSCLEROSIS PROGRESSION
内皮 GATA4 在动脉粥样硬化进展中的作用
  • 批准号:
    MR/W00366X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 137.52万
  • 项目类别:
    Research Grant
Sporadic diffraction and absorption volumetric X-ray imaging
零星衍射和吸收体积 X 射线成像
  • 批准号:
    EP/T034238/1
  • 财政年份:
    2021
  • 资助金额:
    $ 137.52万
  • 项目类别:
    Research Grant
SBIR Phase I: Viability of Low-Cost Cell Components for XL Batteries' Mild Aqueous Flow Battery
SBIR 第一阶段:XL Batteries 温和水流电池的低成本电池组件的可行性
  • 批准号:
    2014603
  • 财政年份:
    2020
  • 资助金额:
    $ 137.52万
  • 项目类别:
    Standard Grant
ACID - Accelerated Contraband Identification by Diffraction
ACID - 通过衍射加速违禁品识别
  • 批准号:
    ST/N006534/1
  • 财政年份:
    2016
  • 资助金额:
    $ 137.52万
  • 项目类别:
    Research Grant
Interface Structure and Dynamics in Multiferroic Phase Transformations
多铁相变中的界面结构和动力学
  • 批准号:
    1609545
  • 财政年份:
    2016
  • 资助金额:
    $ 137.52万
  • 项目类别:
    Continuing Grant
Manipulation of perovskite dielectrics with high electric fields and large strains
高电场和大应变钙钛矿电介质的操控
  • 批准号:
    1106050
  • 财政年份:
    2011
  • 资助金额:
    $ 137.52万
  • 项目类别:
    Standard Grant
U.S.-Japan Dissertation Enhancement in Advanced X-ray Scattering Techniques for Complex Oxides
美日复合氧化物先进 X 射线散射技术论文增强
  • 批准号:
    0844424
  • 财政年份:
    2009
  • 资助金额:
    $ 137.52万
  • 项目类别:
    Standard Grant

相似国自然基金

拟连续domain范畴的若干问题研究
  • 批准号:
    12301583
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
格值蕴涵算子与Domain理论中的若干问题
  • 批准号:
    12331016
  • 批准年份:
    2023
  • 资助金额:
    193.00 万元
  • 项目类别:
    重点项目
Domain理论中概率幂构造的若干问题研究
  • 批准号:
    12371457
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
To空间上Domain理论中若干问题研究
  • 批准号:
    12261040
  • 批准年份:
    2022
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
面向Jung-Tix问题的Domain理论与量化序理论研究
  • 批准号:
    12231007
  • 批准年份:
    2022
  • 资助金额:
    235 万元
  • 项目类别:
    重点项目
C2 DOMAIN PROTEIN 1 (C2DP1)基因家族在植物开花调控中的功能研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
第四届Domain理论与拓扑学青年学者论坛
  • 批准号:
    12242110
  • 批准年份:
    2022
  • 资助金额:
    5.00 万元
  • 项目类别:
    专项项目
Domain理论中的收敛性与K-有界Sober空间范畴
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
广义Domain结构的表示理论研究
  • 批准号:
    12171149
  • 批准年份:
    2021
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
拓扑空间的概率幂domain及相关问题研究
  • 批准号:
    12001385
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

HMA domain proteins as conserved targets of pathogens that exploit plasmodesmata
HMA 结构域蛋白作为利用胞间连丝的病原体的保守靶标
  • 批准号:
    BB/X016056/1
  • 财政年份:
    2024
  • 资助金额:
    $ 137.52万
  • 项目类别:
    Research Grant
Did light dictate ancient diversification of phylogeny and cell structure in the domain bacteria?
光是否决定了细菌领域的古代系统发育和细胞结构的多样化?
  • 批准号:
    24H00582
  • 财政年份:
    2024
  • 资助金额:
    $ 137.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411152
  • 财政年份:
    2024
  • 资助金额:
    $ 137.52万
  • 项目类别:
    Standard Grant
EAGER: Algorithms for Analyzing Faulty Data Using Domain Information
EAGER:使用域信息分析错误数据的算法
  • 批准号:
    2414736
  • 财政年份:
    2024
  • 资助金额:
    $ 137.52万
  • 项目类别:
    Standard Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y000455/1
  • 财政年份:
    2024
  • 资助金额:
    $ 137.52万
  • 项目类别:
    Research Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y001117/1
  • 财政年份:
    2024
  • 资助金额:
    $ 137.52万
  • 项目类别:
    Research Grant
Multi-dimensional quantum-enabled sub-THz Space-Borne ISAR sensing for space domain awareness and critical infrastructure monitoring - SBISAR
用于空间域感知和关键基础设施监测的多维量子亚太赫兹星载 ISAR 传感 - SBISAR
  • 批准号:
    EP/Y022092/1
  • 财政年份:
    2024
  • 资助金额:
    $ 137.52万
  • 项目类别:
    Research Grant
CRII: SHF: Systematic Construction of Teaching Language Progressions for Embedded Domain-Specific Languages
CRII:SHF:嵌入式领域特定语言教学语言进程的系统构建
  • 批准号:
    2348408
  • 财政年份:
    2024
  • 资助金额:
    $ 137.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411153
  • 财政年份:
    2024
  • 资助金额:
    $ 137.52万
  • 项目类别:
    Standard Grant
CAREER: Continual Learning with Evolving Memory, Soft Supervision, and Cross-Domain Knowledge - Foundational Theory and Advanced Algorithms
职业:利用进化记忆、软监督和跨领域知识进行持续学习——基础理论和高级算法
  • 批准号:
    2338506
  • 财政年份:
    2024
  • 资助金额:
    $ 137.52万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了