Parametric Wave Coupling and Non-Linear Mixing in Plasma

等离子体中的参量波耦合和非线性混合

基本信息

  • 批准号:
    EP/R004773/1
  • 负责人:
  • 金额:
    $ 97.05万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Plasma is a state of matter that exists when the energy level or temperature become so high that electrons are no longer bound to atoms. This produces at least two species (negative electrons and positive ions) with opposite charge and very different masses (electron mass << ion mass). The charge of both types of particle make them each respond to electromagnetic fields (such as light, microwave and radio waves), but in opposite directions, and at very different rates. They particularly respond to waves at frequencies close those of natural plasma oscillations, determined by complicated combinations of the magnitude and direction of any static magnetic field, the number density and mass of the particles. They can absorb wave energy at frequencies called 'resonances', and reflect wave energy at frequencies called 'cut-offs'. These effects are often used to heat or measure plasmas in important laboratory experiments and applications, such as new techniques for energy production through fusion reactions (magnetically confined) and industrial processing as well as natural plasmas in the Earth's magnetosphere and ionosphere. Both natural ionospheric and magnetospheric plasmas are important to modern communication and navigation systems. In industrial processing, plasma physics underpins semiconductor processing and hence modern digital technology. In fusion energy research the impact potential is to enable an almost unlimited supply of energy, addressing serious environmental concerns surrounding the use of fossil fuel, with no long term radioactive byproducts.Parametric coupling refers to a multi-wave interaction where two or more waves exchange energy when their frequencies are related by a natural plasma oscillation frequency. Such processes have recently been found to cause difficulties in laser-plasma interactions for inertial confinement fusion, whilst at the same time offering exciting potential for new and more flexible ways of delivering energy into both inertially and magnetically confined fusion plasmas. Indications exist that suggest such new techniques will be increasingly important as such research moves from fundamental experiments to application scale equipment. We therefore propose to undertake fundamental research investigating these interactions in the microwave frequency range. The microwave range is particularly appealing for such research since powerful sources and amplifiers, developed for a range of applications, are readily available, can be very precisely controlled, enhancing the ability to investigate the plasma physics dynamics, whilst groundbreaking research points towards microwave generators achieving very high levels of normalised intensity (a measure of the effective intensity of the wave, affected by the wavelength, meaning that microwave intensities are effectively 'uplifted' compared to optical intensities). This therefore indicates potential in the microwave frequency range to explore the dynamics of extreme ranges of wave-plasma interaction in the near future. The project will be based at the University of Strathclyde where it benefits from co-location within a pre-eminent microwave source research laboratory. A further motivation for investigating the effect of wave coupling using microwaves is its direct application relevance to industrial processing and magnetic confinement fusion plasma physics.The coupling of two precisely controlled microwave beams (~10cm to 3cm wavelength) in a (weakly to strongly) magnetised helicon plasma by plasma (acoustic-like) oscillations in the electrons and ions, cyclotron oscillation of the electrons and ions and hybrid oscillations including both quasi-acoustic and cyclotron motion will be investigated, as will the effects of stochastic heating where 'quasi-random' motion of particles in high amplitude waves gives very rapid increase in effective temperature.
等离子体是一种物质状态,当能量水平或温度变得如此之高,电子不再与原子结合时存在。这会产生至少两种具有相反电荷和非常不同质量(电子质量<<离子质量)的物质(负电子和正离子)。这两种粒子的电荷使它们各自对电磁场(如光、微波和无线电波)作出反应,但方向相反,速度也大不相同。它们对频率接近自然等离子体振荡频率的波特别敏感,而自然等离子体振荡是由静磁场的大小和方向、粒子的数量密度和质量的复杂组合决定的。它们可以在称为“共振”的频率下吸收波能,并在称为“截止”的频率下反射波能。在重要的实验室实验和应用中,例如通过聚变反应(磁约束)和工业加工产生能量的新技术以及地球磁层和电离层中的天然等离子体,这些效应通常用于加热或测量等离子体。自然电离层和磁层等离子体对现代通信和导航系统都很重要。在工业加工中,等离子体物理学是半导体加工的基础,因此也是现代数字技术的基础。在核聚变能源研究中,核聚变的潜在影响是实现几乎无限的能源供应,解决化石燃料使用带来的严重环境问题,同时不会产生长期的放射性副产品。参数耦合是指多波相互作用,当两个或多个波的频率与自然等离子体振荡频率相关时,它们交换能量。这种过程最近被发现在激光等离子体相互作用的惯性约束聚变造成的困难,而在同一时间提供了令人兴奋的潜力,新的和更灵活的方式提供能量到惯性和磁约束聚变等离子体。有迹象表明,随着这些研究从基础实验转向应用规模设备,这些新技术将变得越来越重要。因此,我们建议进行基础研究,调查微波频率范围内的这些相互作用。微波范围对此类研究特别有吸引力,因为为一系列应用开发的强大源和放大器随时可用,可以非常精确地控制,增强了研究等离子体物理动力学的能力,同时开创性的研究指向微波发生器实现非常高的归一化强度水平。(受波长影响的波的有效强度的量度,意味着微波强度与光学强度相比被有效地“提升”)。因此,这表明在不久的将来,在微波频率范围内探索波-等离子体相互作用的极端范围的动力学的潜力。该项目将设在斯特拉斯克莱德大学,在那里它受益于一个卓越的微波源研究实验室内的共同位置。研究使用微波的波耦合效应的另一动机是其与工业处理和磁约束聚变等离子体物理学的直接应用相关性。(~ 10 cm至3 cm波长),(弱到强)磁化螺旋等离子体将研究电子和离子中的(类声)振荡、电子和离子的回旋振荡以及包括准声和回旋运动的混合振荡,随机加热的效果也是如此,其中粒子在高振幅波中的“准随机”运动使有效温度非常迅速地增加。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Collisionless shock acceleration in the corona of an inertial confinement fusion pellet with possible application to ion fast ignition.
惯性限制融合颗粒的电晕中的无碰撞冲击加速度可能应用于离子快速点火。
Observation of electron cyclotron harmonic emissions due to electrostatic instabilities in mirror-confined plasma
  • DOI:
    10.1103/physrevresearch.2.043272
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    B. Eliasson;M. Viktorov;D. Speirs;K. Ronald;D. Mansfeld;A. Phelps
  • 通讯作者:
    B. Eliasson;M. Viktorov;D. Speirs;K. Ronald;D. Mansfeld;A. Phelps
Observation and Numerical Modelling of Ionospheric Beat-Wave Brillouin Scattering at EISCAT
EISCAT 电离层拍波布里渊散射的观测和数值模拟
  • DOI:
    10.1109/icops37625.2020.9717650
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eliassen B
  • 通讯作者:
    Eliassen B
Bandwidth effects in stimulated Brillouin scattering driven by partially incoherent light
  • DOI:
    10.1088/1361-6587/ac11b5
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    B. Brandao;J. E. Santos;R. Trines;R. Bingham;L. Silva
  • 通讯作者:
    B. Brandao;J. E. Santos;R. Trines;R. Bingham;L. Silva
Low-Loss Transmission Line for a 3.4-kW, 93-GHz Gyro-Traveling-Wave Amplifier
  • DOI:
    10.1109/ted.2020.3039427
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Donaldson, Craig R.;Zhang, Liang;Whyte, Colin G.
  • 通讯作者:
    Whyte, Colin G.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Ronald其他文献

Study of a 0.35 THz Extended Interaction Oscillator Driven by a Pseudospark-Sourced Sheet Electron Beam
赝火花源片状电子束驱动的 0.35 THz 扩展相互作用振荡器的研究
  • DOI:
    10.1109/ted.2019.2957760
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Jie Xie;Liang Zhang;Huabi Yin;Wenlong He;Kevin Ronald;A. D. R. Phelps;Xiaodong Chen;Jin Zhang;Yasir Alfadhl;Xuesong Yuan;Lin Meng;Adrian W. Cross
  • 通讯作者:
    Adrian W. Cross
Sub-THz and THz Cherenkov radiation source with two-dimensional periodic surface lattice and multistage depressed collector
  • DOI:
    10.1038/s41598-024-74374-9
  • 发表时间:
    2024-10-13
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Amy J. MacLachlan;Liang Zhang;Ivan V. Konoplev;Alan D. R. Phelps;Craig W. Robertson;Philip MacInnes;Colin G. Whyte;Kevin Ronald;Adrian W. Cross;Mark A. Henderson
  • 通讯作者:
    Mark A. Henderson

Kevin Ronald的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin Ronald', 18)}}的其他基金

MICE Ionization-Cooling Demonstration
MICE 电离冷却演示
  • 批准号:
    ST/P001114/1
  • 财政年份:
    2017
  • 资助金额:
    $ 97.05万
  • 项目类别:
    Research Grant
Continuation of UK participation in the International Muon Ionization Cooling Experiment - Bridging Funds
英国继续参与国际介子电离冷却实验 - 过渡基金
  • 批准号:
    ST/N003403/1
  • 财政年份:
    2016
  • 资助金额:
    $ 97.05万
  • 项目类别:
    Research Grant
Proposal for continuation of UK participation in the International Muon Ionization Cooling Experiment: Requested Additional Proposal for Studentship
英国继续参与国际介子电离冷却实验的提案:要求额外的学生提案
  • 批准号:
    ST/K003097/1
  • 财政年份:
    2013
  • 资助金额:
    $ 97.05万
  • 项目类别:
    Research Grant
Proposal for continuation of UK participation in the International Muon Ionization Cooling Experiment
关于英国继续参与国际μ介子电离冷却实验的提案
  • 批准号:
    ST/J001953/1
  • 财政年份:
    2012
  • 资助金额:
    $ 97.05万
  • 项目类别:
    Research Grant
Instabilities in non-thermal plasmas
非热等离子体中的不稳定性
  • 批准号:
    EP/G04239X/1
  • 财政年份:
    2009
  • 资助金额:
    $ 97.05万
  • 项目类别:
    Research Grant

相似国自然基金

WASP家族蛋白WAVE2调节T细胞静息和活化的机制研究
  • 批准号:
    32300748
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
四阶奇异摄动Bi-wave问题各向异性网格有限元方法一致收敛性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
细胞骨架调节蛋白WAVE2维护免疫耐受及抑制自身免疫的机制研究
  • 批准号:
    32270940
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
WAVE1/KMT2A甲基化作用调控上皮性卵巢癌增殖转移的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
WAVE1 调控脓毒症免疫代谢反应的分子机制
  • 批准号:
    2021JJ31110
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
利用光学系统研究空间Rogue Wave的控制和预测
  • 批准号:
    12004282
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
WASp家族Verprolin同源蛋白WAVE2调节T细胞免疫稳态和抗原特异性免疫应答的机制研究
  • 批准号:
    31970841
  • 批准年份:
    2019
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
复微分方程的亚纯解和偏微分方程的rogue wave解
  • 批准号:
    11701382
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
植物SCAR/WAVE复合体与线粒体协同调节的自噬机制及其对柑橘果实品质的影响
  • 批准号:
    31772281
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
WAVE2调控SATB1促进Tfh细胞分化在系统性红斑狼疮发病机制中的研究
  • 批准号:
    81673058
  • 批准年份:
    2016
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目

相似海外基金

Exploration of the strong coupling regime between the 3D cavity and super conducting quantum bits for low-mass wave-like dark matter searches
探索 3D 腔和超导量子比特之间的强耦合机制,用于低质量波状暗物质搜索
  • 批准号:
    23K13093
  • 财政年份:
    2023
  • 资助金额:
    $ 97.05万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ionospheric irregularities and their coupling with the magnetosphere and radio wave propagation in and emissions from the ionosphere
电离层不规则性及其与磁层的耦合以及电离层中的无线电波传播和发射
  • 批准号:
    RGPIN-2019-04435
  • 财政年份:
    2022
  • 资助金额:
    $ 97.05万
  • 项目类别:
    Discovery Grants Program - Individual
The development of nonlinear ship-tank coupling simulation system under high wave condition considering the nonlinear tank load
考虑非线性罐体载荷的高波工况非线性船罐耦合仿真系统开发
  • 批准号:
    22K14435
  • 财政年份:
    2022
  • 资助金额:
    $ 97.05万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ionospheric irregularities and their coupling with the magnetosphere and radio wave propagation in and emissions from the ionosphere
电离层不规则性及其与磁层的耦合以及电离层中的无线电波传播和发射
  • 批准号:
    RGPIN-2019-04435
  • 财政年份:
    2021
  • 资助金额:
    $ 97.05万
  • 项目类别:
    Discovery Grants Program - Individual
Ionospheric irregularities and their coupling with the magnetosphere and radio wave propagation in and emissions from the ionosphere
电离层不规则性及其与磁层的耦合以及电离层中的无线电波传播和发射
  • 批准号:
    RGPIN-2019-04435
  • 财政年份:
    2020
  • 资助金额:
    $ 97.05万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: The Role of Gravity Instability and Breakdown on Subsequent Gravity Wave Generation and Coupling
职业:重力不稳定性和分解对后续重力波产生和耦合的作用
  • 批准号:
    1944027
  • 财政年份:
    2020
  • 资助金额:
    $ 97.05万
  • 项目类别:
    Continuing Grant
Dynamical non-adiabatic theory of chemical bond with localized electron wave packet with valence-bond spin-coupling
价键自旋耦合局域电子波包化学键动力学非绝热理论
  • 批准号:
    19K22173
  • 财政年份:
    2019
  • 资助金额:
    $ 97.05万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
WoU-MMA: Gravitational Wave Coupling with Inhomogeneous Plasma and Asymptotic Theory of Polarization Effects in Curved Spacetime
WoU-MMA:非均匀等离子体的引力波耦合和弯曲时空极化效应的渐近理论
  • 批准号:
    1903130
  • 财政年份:
    2019
  • 资助金额:
    $ 97.05万
  • 项目类别:
    Standard Grant
Ionospheric irregularities and their coupling with the magnetosphere and radio wave propagation in and emissions from the ionosphere
电离层不规则性及其与磁层的耦合以及电离层中的无线电波传播和发射
  • 批准号:
    RGPIN-2019-04435
  • 财政年份:
    2019
  • 资助金额:
    $ 97.05万
  • 项目类别:
    Discovery Grants Program - Individual
COMBINED WAVE RUNUP, OVERTOPPING AND OVERFLOW MODELLING IN WAVE-SURGE COUPLING SIMULATION
波浪涌耦合仿真中的组合波爬升、越顶和溢流建模
  • 批准号:
    19H02403
  • 财政年份:
    2019
  • 资助金额:
    $ 97.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了