Molecular Switches as Sensors for Kinase Activity
分子开关作为激酶活性传感器
基本信息
- 批准号:EP/R00899X/1
- 负责人:
- 金额:$ 12.51万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this study is to develop a new class of molecule that can report back on important biological processes as a tool for scientists designing new drugs. Biology uses various types of protein to pass signals around a cell, allowing the cell to respond to its environment. One such signalling mechanism is the addition of a phosphate group to a protein, and this process is carried out by a class of proteins called 'kinases'. Some diseases, including cancer, can come about in part because the signalling mechanism in a cell has become faulty, for example telling it to grow when it should not. Because of this, kinase enzymes are an attractive target for new drugs. Medicinal chemists are designing small molecules that can shut down specific kinases, and therefore prevent their signal from being passed on. This has the potential to switch off the broken signalling mechanisms in a diseased cell. Unfortunately, measuring the activity of a kinase is not straightforward, so it is a difficult and time-consuming process to know whether or not a new drug will be effective at inhibiting a specific kinase. We will help to solve this problem by developing a molecule that will act as a reporter of how active a given kinase is, therefore speeding up the process of searching for kinase inhibitors. This reporter molecule will work in a unique way: it will change shape when a kinase adds a phosphate group to it, and the change in shape will bring about a fluorescent signal that can be detected with standard laboratory instruments. This is possible because the reporter molecule is a 'peptide', built from the same building blocks as the proteins that the kinase would normally add a phosphate group to. The sensor will work because it has a central core that can exist in two distinct shapes: one stretched out, and one in which the molecule is folded back on itself. When it doesn't have a phosphate group, the sensor will exist predominantly in the stretched out state. When the kinase adds a phosphate group to it, however, the sensor will fold back on itself so that it can wrap around the phosphate group. This folded form will bring two special fluorescent groups close together in space, allowing them to produce a signal that can be easily detected with standard lab instruments. The result of this is that the amount of signal produced by the sensor will depend on the ability of the kinase to add a phosphate group to it. This means that a scientist will be able to conduct a screen where they look for small molecules that inhibit a kinase simply by looking for conditions in which the kinase is prevented from switching the sensor to the 'on' state. Rapid screens of this sort are vitally important in the search for new drugs because the number of potential drug molecules is huge. In the case of kinase inhibitors for the treatment of cancer it is also necessary to consider that the kinases themselves can mutate, causing a cancer to become resistant to a drug. By speeding up the screening process it will become possible to search for new drugs more quickly, and to better understand how changes to individual kinases can affect their response to existing drugs. This will help clinicians to tailor their treatments to a patient's specific illness- so called 'personalised healthcare'. In the case of cancer this will help doctors to be one step ahead of the mutations that can cause a tumour to become drug resistant, allowing them to make better informed choices of which drugs to use, resulting in more-effective treatments.
这项研究的目标是开发一类新的分子,可以报告重要的生物过程,作为科学家设计新药的工具。生物学使用各种类型的蛋白质在细胞周围传递信号,使细胞对其环境做出反应。其中一种信号传导机制是向蛋白质中添加磷酸基团,而这一过程是由一类称为“激酶”的蛋白质完成的。包括癌症在内的一些疾病的发生,部分原因是细胞中的信号机制出现了故障,例如告诉它在不应该生长的时候生长。正因为如此,激酶是新药的一个有吸引力的靶点。药物化学家正在设计能够关闭特定激酶的小分子,从而阻止它们的信号传递,这有可能关闭患病细胞中受损的信号机制。不幸的是,测量激酶的活性并不简单,因此要知道新药是否能有效抑制特定激酶是一个困难和耗时的过程。我们将通过开发一种分子来帮助解决这个问题,这种分子将充当一种给定激酶活性的报告者,从而加快寻找激酶抑制剂的过程。这种报告分子将以一种独特的方式工作:当激酶向其添加磷酸基团时,它会改变形状,形状的变化将带来可以用标准实验室仪器检测到的荧光信号。这是可能的,因为报告分子是一种“肽”,由与激酶通常会添加磷酸基团的蛋白质相同的结构单元构建。传感器将工作,因为它有一个中心核心,可以存在于两种不同的形状:一个是伸展的,另一个是分子折叠在自己身上。当它没有磷酸基团时,传感器将主要以伸展状态存在。然而,当激酶向其添加磷酸基团时,传感器将折叠回自身,以便它可以包裹磷酸基团。这种折叠形式将使两个特殊的荧光基团在空间中靠近在一起,使它们能够产生一种可以用标准实验室仪器很容易检测到的信号。这样的结果是传感器产生的信号量将取决于激酶向其添加磷酸基团的能力。这意味着科学家将能够进行筛选,他们只需寻找阻止激酶将传感器切换到“打开”状态的条件,即可寻找抑制激酶的小分子。这种快速筛选在寻找新药方面至关重要,因为潜在的药物分子数量巨大。在激酶抑制剂用于治疗癌症的情况下,还需要考虑激酶本身可以突变,导致癌症对药物产生耐药性。通过加快筛选过程,将有可能更快地寻找新药,并更好地了解单个激酶的变化如何影响它们对现有药物的反应。这将有助于临床医生根据患者的具体疾病定制治疗-所谓的“个性化医疗保健”。在癌症的情况下,这将有助于医生领先于可能导致肿瘤产生耐药性的突变,使他们能够更好地选择使用哪种药物,从而获得更有效的治疗方法。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Drew Thomson其他文献
Drew Thomson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Drew Thomson', 18)}}的其他基金
Harnessing the biosynthetic potential of bacteria to produce ribosomally synthesised natural products
利用细菌的生物合成潜力生产核糖体合成的天然产物
- 批准号:
BB/V016059/1 - 财政年份:2021
- 资助金额:
$ 12.51万 - 项目类别:
Research Grant
相似海外基金
p53PRISM: Regulation of life-and-death decisions by conformational switches
p53PRISM:构象开关调节生死决定
- 批准号:
EP/Z000823/1 - 财政年份:2024
- 资助金额:
$ 12.51万 - 项目类别:
Fellowship
Critical metal fluid migration in shear zones during tectonic switches
构造转换期间剪切带中的关键金属流体运移
- 批准号:
DE240100654 - 财政年份:2024
- 资助金额:
$ 12.51万 - 项目类别:
Discovery Early Career Researcher Award
Probing life-and-death switches using "designer" p53
使用“设计者”探测生死开关 p53
- 批准号:
BB/W015730/1 - 财政年份:2023
- 资助金额:
$ 12.51万 - 项目类别:
Research Grant
CAREER: Designing Next-Generation Programmable Switches for Stateful In-Network Computing
职业:设计用于状态网络计算的下一代可编程交换机
- 批准号:
2239829 - 财政年份:2023
- 资助金额:
$ 12.51万 - 项目类别:
Continuing Grant
High-speed optical fibre switches for quantum photonic networks.
用于量子光子网络的高速光纤交换机。
- 批准号:
2888749 - 财政年份:2023
- 资助金额:
$ 12.51万 - 项目类别:
Studentship
Expansion of Adaptive Link Rate Switching Method between SDN Switches for Power Saving in Organization Networks
扩展 SDN 交换机之间的自适应链路速率切换方法,以实现组织网络的节能
- 批准号:
23K11081 - 财政年份:2023
- 资助金额:
$ 12.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SBIR Phase I: Silicon Carbide Radio Frequency Switches
SBIR 第一阶段:碳化硅射频开关
- 批准号:
2334387 - 财政年份:2023
- 资助金额:
$ 12.51万 - 项目类别:
Standard Grant
Pendant Photochromic Switches Enabling Fluxional Macromolecular Pi-Electronics
悬吊式光致变色开关实现通量高分子 Pi 电子学
- 批准号:
2305009 - 财政年份:2023
- 资助金额:
$ 12.51万 - 项目类别:
Standard Grant
Development of Programmable RNA Switches Based on Intracellular RNA Editing Mechanisms
基于细胞内RNA编辑机制的可编程RNA开关的开发
- 批准号:
23K14130 - 财政年份:2023
- 资助金额:
$ 12.51万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular switches and genetic consequences of grain retention in cereals
谷物中谷物保留的分子开关和遗传后果
- 批准号:
DP220102271 - 财政年份:2022
- 资助金额:
$ 12.51万 - 项目类别:
Discovery Projects














{{item.name}}会员




