The Homological Minimal Model Programme (Extension)

同调最小模型程序(扩展)

基本信息

  • 批准号:
    EP/R009325/1
  • 负责人:
  • 金额:
    $ 70.76万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

A surprisingly large proportion of the natural world, with its incredibly rich structure, systems and complex lifeforms, can be understood using scientific principles that are either underpinned, controlled, or can be approximated by, mathematical objects called polynomials. These fundamental objects are built on solid, long-standing mathematical foundations, and have the advantage of being able to describe relationships with both precision and with grace. Their deceptively simple form, however, often masks a deep and complicated underlying geometry, which in turn often exhibits very counter-intuitive behaviour.This proposal lies within the framework of polynomials, and their attached geometric varieties. It seeks to answer a series of open questions in birational surgeries, their classification, and enumerative questions by using newly constructed noncommutative invariants, and using the additional structure that these encode to distinguish geometric objects to a much finer degree. The first part of this proposal seeks classification of geometric structures via noncommutative techniques, and in process proposes an ADE classification of certain Jacobi algebras. This, and previous work, strongly suggests results in other areas, and the second part of the project involves these, from generating sets of the pure braid groups, to new combinatorial tilings of the plane which conjecturally control many structures in both algebra and geometry, with strong links to Coxeter groups. The third part unifies and generalises into a wider framework, which involves understanding enumerative and structural questions for both singular flops, and for flips.
自然界中惊人的大部分,其令人难以置信的丰富结构,系统和复杂的生命形式,可以使用科学原理来理解,这些原理要么是支撑,控制,要么可以近似,数学对象称为多项式。这些基本对象建立在坚实的、长期存在的数学基础之上,并且具有能够精确而优雅地描述关系的优势。然而,它们看似简单的形式往往掩盖了一个深刻而复杂的基本几何,而这又往往表现出非常违反直觉的行为。这个提议位于多项式及其附属几何变体的框架内。它试图回答一系列开放的问题,在双理性手术,他们的分类,并枚举问题,通过使用新构建的非交换不变量,并使用额外的结构,这些编码区分几何对象到一个更精细的程度。该建议的第一部分寻求通过非交换技术的几何结构的分类,并在过程中提出了某些Jacobi代数的ADE分类。这一点,以及以前的工作,强烈建议在其他领域的结果,第二部分的项目涉及这些,从生成集的纯编织群,新的组合平铺的平面这calculally控制许多结构在代数和几何,与强大的联系考克斯特群。第三部分统一和概括成一个更广泛的框架,这涉及到理解两个单一的触发器和翻转枚举和结构的问题。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tangent curves to degenerating hypersurfaces
退化超曲面的切线
Noncommutative enhancements of contractions
  • DOI:
    10.1016/j.aim.2018.11.019
  • 发表时间:
    2016-12
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    W. Donovan;M. Wemyss
  • 通讯作者:
    W. Donovan;M. Wemyss
Curve counting in genus one: Elliptic singularities and relative geometry
属一中的曲线计数:椭圆奇点和相对几何
  • DOI:
    10.14231/ag-2021-020
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Battistella L
  • 通讯作者:
    Battistella L
Relative Quasimaps and Mirror Formulae
相对拟图和镜像公式
Contractions and deformations
  • DOI:
    10.1353/ajm.2019.0018
  • 发表时间:
    2015-11
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    W. Donovan;M. Wemyss
  • 通讯作者:
    W. Donovan;M. Wemyss
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Wemyss其他文献

箙の変異と団傾理論
箭袋突变与群体倾向理论
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Osamu Iyama;Michael Wemyss;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama
  • 通讯作者:
    Osamu Iyama
Introduction to cluster tilting in 2-Calabi-Yau categories
2-Calabi-Yau 类别中的簇倾斜简介
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Osamu Iyama;Michael Wemyss;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama
  • 通讯作者:
    Osamu Iyama
n-representation finite algebras, Homological and geometric methods in algebra(招待講演)
n-表示有限代数、代数中的同调和几何方法(特邀报告)
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Osamu Iyama;Michael Wemyss;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama
  • 通讯作者:
    Osamu Iyama
成長戦略の有効性を問う-産業構造の転換と企業活動の活性化の視点から
质疑增长战略的有效性——从转变产业结构和振兴企业活动的角度
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Osamu Iyama;Michael Wemyss;宮川努
  • 通讯作者:
    宮川努
Tilting theory and Cohen-Macaulay modules
倾斜理论和科恩-麦考利模块
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Osamu Iyama;Michael Wemyss;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama
  • 通讯作者:
    Osamu Iyama

Michael Wemyss的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Wemyss', 18)}}的其他基金

The Homological Minimal Model Program
同调最小模型程序
  • 批准号:
    EP/K021400/2
  • 财政年份:
    2016
  • 资助金额:
    $ 70.76万
  • 项目类别:
    Fellowship
The Homological Minimal Model Program
同调最小模型程序
  • 批准号:
    EP/K021400/1
  • 财政年份:
    2013
  • 资助金额:
    $ 70.76万
  • 项目类别:
    Fellowship

相似国自然基金

对有序实数域o-minimal扩展上可定义函数的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The Minimal Model Program in Positive and Mixed Characteristics
正特征和混合特征的最小模型程序
  • 批准号:
    2306854
  • 财政年份:
    2022
  • 资助金额:
    $ 70.76万
  • 项目类别:
    Standard Grant
Minimal model theory and its applications
最小模型理论及其应用
  • 批准号:
    22K13887
  • 财政年份:
    2022
  • 资助金额:
    $ 70.76万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Minimal Model Program in Positive and Mixed Characteristics
正特征和混合特征的最小模型程序
  • 批准号:
    2101897
  • 财政年份:
    2021
  • 资助金额:
    $ 70.76万
  • 项目类别:
    Standard Grant
Mirror symmetry, Berkovich spaces and the Minimal Model Programme
镜像对称、伯科维奇空间和最小模型程序
  • 批准号:
    EP/S025839/1
  • 财政年份:
    2019
  • 资助金额:
    $ 70.76万
  • 项目类别:
    Research Grant
The minimal model theory for higher-dimensional algebraic varieties and singularity theory
高维代数簇的极小模型理论和奇点理论
  • 批准号:
    19J00046
  • 财政年份:
    2019
  • 资助金额:
    $ 70.76万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of a new prognostic model and a method of assessing minimal residual disease for adult T-cell leukemia/lymphoma
开发成人 T 细胞白血病/淋巴瘤的新预后模型和评估微小残留病的方法
  • 批准号:
    19K17861
  • 财政年份:
    2019
  • 资助金额:
    $ 70.76万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
K-stability and minimal model program
K 稳定性和最小模型程序
  • 批准号:
    18K13388
  • 财政年份:
    2018
  • 资助金额:
    $ 70.76万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Model Theory and Combinatorial Geometry, Algebraic and O-Minimal Flows.
模型理论和组合几何、代数和 O 最小流。
  • 批准号:
    1800806
  • 财政年份:
    2018
  • 资助金额:
    $ 70.76万
  • 项目类别:
    Continuing Grant
Minimal model program in positive characteristic
积极特征的最小模型程序
  • 批准号:
    18K13386
  • 财政年份:
    2018
  • 资助金额:
    $ 70.76万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigation and Development of a Whole-Cell Model for a Minimal Synthetic Organism
最小合成生物体全细胞模型的研究和开发
  • 批准号:
    1953789
  • 财政年份:
    2017
  • 资助金额:
    $ 70.76万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了