Attosecond X-ray Spectroscopy of Ultrafast Dynamics in the Condensed Phase
凝聚相超快动力学的阿秒 X 射线光谱
基本信息
- 批准号:EP/R019509/1
- 负责人:
- 金额:$ 156.84万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We are all familiar with the idea that X-rays can "see" inside matter, after all this is the basis of much imaging technology from medical X-rays to Superman's astounding vision. We plan to use new sources of X-rays with the unique property that they are in pulses of duration less than 1 femtosecond (1 fs= 10^-15 s that is a millionth of a billionth of a second) to allow us, for the first time, to take snapshots and even make movies of some of the fastest events that occur within matter. Our ability to produce and use such short pulses of X-rays has come out of our research over the past six years (funded by an ERC Advanced Grant and an EPSRC Programme Grant). We showed that high harmonic generation (HHG) based sources of ~0.3 fs pulse duration could be generated from 150 - 600 eV, an unprecedented achievement for ultrafast X-ray sources. Combined with the ultra-thin liquid sheet jets that we have recently invented and few-femtosecond optical pulses available in our laboratory that can start the clock by electronic excitation of the material, we have now in place the tools that enable a new kind of ultrafast X-ray spectroscopy that can be applied to any system whether it is in gas, liquid or solid state. We now want to advance this research in new directions by using this method to investigate some of the fastest processes in physics and chemistry. In parallel with our laser research we have been working with international teams to develop the methods of using X-ray free electron laser facilities to make measurements on the few-femtosecond timescale. This has included work with LCLS (SLAC, California) in a two-pulse/two-colour mode with ~ 3 fs temporal resolution. Later this year it is anticipated that LCLS will produce the first FEL based sub-femtosecond X-ray pulses of extreme brightness (> 10^6 times greater than our HHG source). We plan to use this new capability to develop a new concept in X-ray non-linear spectroscopy that will allow us to precisely follow electron motions in matter at atomic spatial resolution and with time-scales faster than a femtosecond.What will we investigate with these remarkable new tools? The answer is the fundamental dynamical events in physics, such as exciton formation and charge migration, and key processes in chemistry, such as electron transfer and bond-breaking/making. These can occur within 10 fs of initial electronic excitation and have hitherto not been accessible to direct measurement. Moreover with our tools we can track the dynamics of microscopic systems across the boundary in the temporal domain between quantum and classical behaviour. In condensed phase systems, where the quantum coherence of the initial state is lost in a few 10's of femtoseconds, this will allow us to see into a new quantum regime of dynamics. In particular we will focus on structures containing delocalised electrons (pi-conjugated systems) as in this case the electrons are highly mobile and so can display the very fastest dynamics. Additionally pi-conjugated molecules are the building blocks of polymers and molecular complexes of great interest in photochemistry and solar-energy conversion. Not only will our measurements capture the ultrafast electronic motion in these systems they will also allow us to measure the structural dynamics associated with isomerization, ring opening and other chemical changes.Our research will extend the frontier of science's measurement capability in the time domain with the likelihood of measuring physical processes at timescales 100 times faster than before. This will lead to new breakthroughs in our understanding of quantum dynamical processes in nature and technology.
我们都熟悉X射线可以“看到”内部物质的想法,毕竟这是从医学X射线到超人惊人视力的许多成像技术的基础。我们计划使用新的X射线源,这种X射线源具有独特的性质,脉冲持续时间小于1飞秒(1 fs= 10^-15 s,即十亿分之一秒的百万分之一),这使我们能够第一次拍摄快照,甚至拍摄物质中发生的一些最快事件的电影。我们生产和使用这种短脉冲X射线的能力来自我们过去六年的研究(由ERC高级赠款和EPSRC计划赠款资助)。我们表明,基于高次谐波产生(HHG)的源的~0.3 fs的脉冲宽度可以产生从150 - 600 eV,一个前所未有的成就超快X射线源。结合我们最近发明的超薄液体片射流和我们实验室中可用的几个飞秒光脉冲,可以通过材料的电子激发来启动时钟,我们现在已经到位的工具,可以实现一种新的超快X射线光谱学,可以应用于任何系统,无论是气体,液体还是固体状态。我们现在希望通过使用这种方法来研究物理和化学中一些最快的过程,从而在新的方向上推进这项研究。在我们的激光研究的同时,我们一直在与国际团队合作,开发使用X射线自由电子激光设备在几飞秒时间尺度上进行测量的方法。这包括使用LCLS(SLAC,加州)在双脉冲/双色模式下进行的工作,时间分辨率约为3 fs。今年晚些时候,预计LCLS将产生第一个基于自由电子激光的亚飞秒X射线脉冲,其亮度极高(比我们的HHG源大10^6倍)。我们计划利用这一新能力开发X射线非线性光谱学的新概念,使我们能够以原子的空间分辨率和比飞秒更快的时间尺度精确地跟踪物质中的电子运动。我们将用这些非凡的新工具研究什么?答案是物理学中的基本动力学事件,如激子形成和电荷迁移,以及化学中的关键过程,如电子转移和键断裂/形成。这些可以发生在初始电子激发的10 fs内,迄今为止还无法直接测量。此外,通过我们的工具,我们可以跟踪微观系统的动态跨越量子和经典行为之间的时间域的边界。在凝聚相系统中,初始状态的量子相干性在几十飞秒内就消失了,这将使我们能够看到一个新的量子动力学机制。特别地,我们将关注包含离域电子的结构(π共轭系统),因为在这种情况下,电子是高度移动的,因此可以显示最快的动力学。此外,π共轭分子是光化学和太阳能转换中非常感兴趣的聚合物和分子复合物的结构单元。我们的测量不仅将捕捉这些系统中的超快电子运动,还将使我们能够测量与异构化,开环和其他化学变化相关的结构动力学。我们的研究将扩展科学在时域测量能力的前沿,有可能测量比以前快100倍的时间尺度的物理过程。这将导致我们对自然界和技术中量子动力学过程的理解取得新的突破。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser
- DOI:10.1038/s41566-019-0549-5
- 发表时间:2020-01-01
- 期刊:
- 影响因子:35
- 作者:Duris, Joseph;Li, Siqi;Marangos, Jon P.
- 通讯作者:Marangos, Jon P.
Correlation-Driven Transient Hole Dynamics Resolved in Space and Time in the Isopropanol Molecule
- DOI:10.1103/physrevx.11.031048
- 发表时间:2021-09-01
- 期刊:
- 影响因子:12.5
- 作者:Barillot, T.;Alexander, O.;Kolorenc, P.
- 通讯作者:Kolorenc, P.
Observation of recollision-based high-harmonic generation in liquid isopropanol and the role of electron scattering
- DOI:10.1103/physrevresearch.5.043030
- 发表时间:2023-10-10
- 期刊:
- 影响因子:4.2
- 作者:Alexander,Oliver;Barnard,Jonathan C. T.;Marangos,Jonathan P.
- 通讯作者:Marangos,Jonathan P.
Attosecond Transient Absorption Spooktroscopy: a ghost imaging approach to ultrafast absorption spectroscopy
阿秒瞬态吸收幽灵镜:超快吸收光谱的幽灵成像方法
- DOI:10.48550/arxiv.1909.07441
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Driver T
- 通讯作者:Driver T
Correlation Driven Transient Hole Dynamics Resolved in Space and Time in the Isopropanol Molecule
异丙醇分子时空相关驱动瞬态空穴动力学解析
- DOI:10.48550/arxiv.2105.06507
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Barillot T
- 通讯作者:Barillot T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Marangos其他文献
Jonathan Marangos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Marangos', 18)}}的其他基金
Attosecond Electronic Dynamics of the Valence States in Matter Measured with XFELs
使用 XFEL 测量物质价态的阿秒电子动力学
- 批准号:
EP/X026094/1 - 财政年份:2023
- 资助金额:
$ 156.84万 - 项目类别:
Research Grant
Electron dynamics in biological relevant media
生物相关介质中的电子动力学
- 批准号:
BB/X005135/1 - 财政年份:2022
- 资助金额:
$ 156.84万 - 项目类别:
Research Grant
Controlling photophysics and photochemistry via quantum superpositions of electronic states: towards attochemistry
通过电子态的量子叠加控制光物理和光化学:走向原子化学
- 批准号:
EP/T006943/1 - 财政年份:2020
- 资助金额:
$ 156.84万 - 项目类别:
Research Grant
Attosecond Electron Dynamics in Molecular and Condensed Phase Systems
分子和凝聚相系统中的阿秒电子动力学
- 批准号:
EP/I032517/1 - 财政年份:2011
- 资助金额:
$ 156.84万 - 项目类别:
Research Grant
IR-FEL/XUV HHG hybrid experiments for molecular science
分子科学中的 IR-FEL/XUV HHG 混合实验
- 批准号:
EP/F021232/1 - 财政年份:2008
- 资助金额:
$ 156.84万 - 项目类别:
Research Grant
Control of Electrons by Few-Cycle Intense Laser Pulses
少周期强激光脉冲控制电子
- 批准号:
EP/E028063/1 - 财政年份:2007
- 资助金额:
$ 156.84万 - 项目类别:
Research Grant
相似国自然基金
基于慧眼-HXMT宽能段观测的X射线吸积脉冲星磁场研究
- 批准号:12373051
- 批准年份:2023
- 资助金额:55.00 万元
- 项目类别:面上项目
同步X-ray成像对调控自噬的联合疗法抗三阴性乳腺癌机制研究
- 批准号:22ZR1470600
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于时空信息融合的2D X-ray到3D CT图像配准实时引导肺癌放疗研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
不同基因型大豆根系生长改善压实土壤结构的机制研究
- 批准号:42007010
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
荷载、浸水条件下花岗岩残积土微细观结构演化及损伤本构关系
- 批准号:51978413
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
基于X射线线形分析技术的钒高温高压强度特性研究
- 批准号:11872056
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
基于原位局域表面等离子体共振技术的CeO2/Ag催化剂表界面效应探索及在催化氧化甲醛中应用
- 批准号:21802066
- 批准年份:2018
- 资助金额:26.6 万元
- 项目类别:青年科学基金项目
CAT、DSA、x-ray与解剖技术相结合确立小腿后外侧皮支链皮瓣血管构筑
- 批准号:31860294
- 批准年份:2018
- 资助金额:42.0 万元
- 项目类别:地区科学基金项目
分子体系激光冷却的机理和方法的高精度理论研究
- 批准号:21773251
- 批准年份:2017
- 资助金额:65.0 万元
- 项目类别:面上项目
若干蛋白质分子的取向测量的二维光谱理论研究
- 批准号:21703221
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
BETTERXPS - Tackling the Peak Assignment Problem in X-ray Photoelectron Spectroscopy with First Principles Calculations
BETTERXPS - 通过第一原理计算解决 X 射线光电子能谱中的峰分配问题
- 批准号:
EP/Y036433/1 - 财政年份:2024
- 资助金额:
$ 156.84万 - 项目类别:
Research Grant
Tackling the Peak Assignment Problem in X-ray Photoelectron Spectroscopy with First Principles Calculations
利用第一原理计算解决 X 射线光电子能谱中的峰分配问题
- 批准号:
EP/Y037022/1 - 财政年份:2024
- 资助金额:
$ 156.84万 - 项目类别:
Research Grant
Gamma-ray spectroscopy of neutron-rich zirconium nuclei
富中子锆核的伽马射线能谱
- 批准号:
2877631 - 财政年份:2023
- 资助金额:
$ 156.84万 - 项目类别:
Studentship
Decay spectroscopy of nuclei close to the r-process path by using a ultra-low background beta-ray detector
使用超低背景 β 射线探测器对靠近 r 过程路径的原子核进行衰变光谱分析
- 批准号:
23K13134 - 财政年份:2023
- 资助金额:
$ 156.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of a novel nuclear spectroscopy method by high-sensitivity gamma-ray polarimeters
高灵敏度伽马射线旋光计开发新型核光谱方法
- 批准号:
23K03444 - 财政年份:2023
- 资助金额:
$ 156.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Revealing the launching mechanism and structure of black hole outflows through high resolution X-ray spectroscopy and multi-wavelength observations
通过高分辨率X射线光谱和多波长观测揭示黑洞流出物的发射机制和结构
- 批准号:
23K03459 - 财政年份:2023
- 资助金额:
$ 156.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
UV Plasmon-Enhanced Chiroptical Spectroscopy of Membrane-Binding Proteins
膜结合蛋白的紫外等离子增强手性光谱
- 批准号:
10680969 - 财政年份:2023
- 资助金额:
$ 156.84万 - 项目类别:
Development of solid-liquid interface total-reflection x-ray spectroscopy with the sensitivity of a few nm and its application to track reactions at solid-liquid interfaces in a real-time manner
几纳米灵敏度固液界面全反射X射线光谱仪的研制及其在实时跟踪固液界面反应中的应用
- 批准号:
23K11710 - 财政年份:2023
- 资助金额:
$ 156.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comprehensive and Versatile In-house X-ray Absorption Spectroscopy Facility
全面且多功能的内部 X 射线吸收光谱设备
- 批准号:
LE230100052 - 财政年份:2023
- 资助金额:
$ 156.84万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Structure analysis of shock-compressed iron alloys by in-situ femtosecond X-ray absorption spectroscopy
原位飞秒 X 射线吸收光谱分析冲击压缩铁合金的结构
- 批准号:
23K17702 - 财政年份:2023
- 资助金额:
$ 156.84万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)