ISCF Wave 1: Materials research hub for energy conversion, capture, and storage

ISCF 第一波:能量转换、捕获和存储的材料研究中心

基本信息

  • 批准号:
    EP/R023581/1
  • 负责人:
  • 金额:
    $ 233.36万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Realising a secure, low-carbon energy future depends upon integrating variable generation into the energy system at a large scale, as well as efficiently harvesting renewable energy. Electrochemical and photoelectrical conversion devices are critical to this goal. The fundamental phenomenon that controls how all such devices perform is charge transport, both through and between materials. The Materials Research Hub for Energy Capture, Conversion, and Storage (M-RHECCS) sets out to advance understanding of the structure/function relations that control charge transport in energy materials, forging general principles that govern charge mobility and exchange. By so doing we will lay a foundation for the informed design of next-generation energy materials. Prior efforts at this scale have built teams centred on isolated technologies. Our vision is more integrated, recognizing that electronic, ionic, and mixed conductors form the operational cores of solar cells, fuel cells, batteries, capacitors, and electrolysers. Impressive advances have been made to face some challenges, delivering innovative processes, analytical techniques, and computational models, but poor integration between application areas restricts progress. M-RHECCS brings together world-leading experts across materials disciplines and energy technologies to form a new network, encouraging unorthodox thinking to spark transformative science. The M-RHECCS will connect experimentalists and theorists across disciplines to advance the basic science of charge mobility. Team members will also examine challenges in translating new science into manufacture and application.To ensure impact we propose to focus on 1) breaking the paradigm of 'power or energy' by making porous electrodes and porous or microstructured composites that produce power and energy, 2) structure/function relations that govern charge mobility in mixed ion/electron conductors (MIECs) and ultimately control the performance and stability of MIEC-based electrodes and active media and 3) elucidating transport modes in unconventional ion conducting polymers and ceramics. Porous electrodes and microstructured composites are used in almost all electrochemical devices and in new types of solar cell. We shall investigate how pore size, structure, and order influence power and energy density in electrochemical systems, how microstructure influences current generation and efficiency in solar cells, and how to optimise both. Single-phase MIECs are found in electrodes and active layers of hybrid solar cells, as well as electrodes in fuel cells, electrolysers, and Li-ion batteries. Optical, electrical, and electrochemical measurements, and self-consistent simulation, will combine to elucidate factors that control charge mobility and the critical issue of stability. Ion-conducting polymers and ceramics are core to fuel cells and electrolysers, and solid Li+ conductors could enable all-solid-state batteries, but high conductivity and suitable mechanical properties must be achieved. We aim to learn what material features control ion transport to pave the way for designing innovative conductors. M-RHECCS will also research the translation of advances in porous electrodes, MIECs and ion-exchange materials into scaleable materials and devices. We will assess the value of better charge-transport materials to power generation via detailed analysis of operational data from actual building-integrated solar generation/storage systems . Engagement with our many industrial partners will maximise our work's impact.The M-RHECCS will pull together not only the energy materials researchers across our five partner institutions but also network stakeholders with cognate interests across the UK, in academia, industry, government, and beyond. We will engage with international leaders in charge-transport materials, inviting them to visit the Hub and the UK more widely and take part in M-RHECCS organised networking events.
实现安全、低碳的能源未来取决于将可变发电大规模整合到能源系统中,以及有效地收集可再生能源。电化学和光电转换设备是实现这一目标的关键。控制所有这些设备如何运行的基本现象是电荷传输,无论是通过材料还是在材料之间。能量捕获、转换和存储材料研究中心(M-RHECCS)致力于促进对控制能源材料中电荷传输的结构/功能关系的理解,形成管理电荷迁移和交换的一般原则。通过这样做,我们将为下一代能源材料的知情设计奠定基础。以前这种规模的努力已经建立了以孤立技术为中心的团队。我们的愿景更加全面,认识到电子、离子和混合导体构成了太阳能电池、燃料电池、电池、电容器和电解液的运行核心。在面对一些挑战方面取得了令人印象深刻的进展,提供了创新的过程、分析技术和计算模型,但应用领域之间的不佳集成限制了进展。M-RHECCS汇聚了材料学科和能源技术领域的世界领先专家,形成了一个新的网络,鼓励非正统思维引发变革性科学。M-RHECCS将把不同学科的实验者和理论家联系起来,以推进电荷移动性的基础科学。团队成员还将研究将新科学转化为生产和应用的挑战。为了确保影响,我们建议重点关注1)通过制造产生功率和能量的多孔电极和多孔或微结构复合材料来打破‘功率或能量’的范式,2)支配混合离子/电子导体(MIEC)中电荷迁移率并最终控制基于MIEC的电极和活性介质的性能和稳定性的结构/功能关系,以及3)阐明非传统离子导电聚合物和陶瓷中的传输模式。多孔电极和微结构复合材料被用于几乎所有的电化学装置和新型太阳能电池。我们将研究孔的大小、结构和顺序如何影响电化学系统中的功率和能量密度,微结构如何影响太阳能电池中的电流产生和效率,以及如何优化两者。单相MIEC存在于混合太阳能电池的电极和有源层中,以及燃料电池、电解槽和锂离子电池的电极中。光学、电学和电化学测量,以及自洽模拟,将结合起来阐明控制电荷迁移率的因素和稳定性这一关键问题。离子导电聚合物和陶瓷是燃料电池和电解液的核心,固体锂离子导体可以实现全固态电池,但必须具有高导电性和合适的机械性能。我们的目标是了解控制离子传输的材料特性,为设计创新的导体铺平道路。M-RHECCS还将研究将多孔电极、MIEC和离子交换材料方面的进展转化为可缩放的材料和设备。我们将通过对实际建筑集成太阳能发电/储存系统的运行数据的详细分析,评估更好的电荷传输材料对发电的价值。与我们许多工业合作伙伴的接触将使我们的工作产生最大影响。M-RHECCS不仅将我们五个合作机构的能源材料研究人员聚集在一起,而且还将在英国各地、学术界、工业界、政府和其他地方建立具有共同利益的利益相关者网络。我们将与负责运输物资的国际领导人接触,邀请他们更广泛地访问Hub和英国,并参加M-RHECCS组织的网络活动。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Augmented State Observer for Simultaneous Estimation of Charge State and Crossover in Self-Discharging Disproportionation Redox Flow Batteries
用于同时估计自放电歧化氧化还原液流电池中的充电状态和交叉的增强状态观测器
  • DOI:
    10.1109/ccta.2019.8920467
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ascencio P
  • 通讯作者:
    Ascencio P
Adaptive Observer for Charge-State and Crossover Estimation in Disproportionation Redox Flow Batteries undergoing Self-Discharge
用于自放电歧化氧化还原液流电池中的充电状态和交叉估计的自适应观测器
  • DOI:
    10.23919/acc.2019.8814764
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ascencio P
  • 通讯作者:
    Ascencio P
Hybrid Thermo-Electrochemical In Situ Instrumentation for Lithium-Ion Energy Storage
  • DOI:
    10.1002/batt.201900109
  • 发表时间:
    2019-09-03
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Amietszajew, Tazdin;Fleming, Joe;Bhagat, Rohit
  • 通讯作者:
    Bhagat, Rohit
Deactivation, reactivation and super-activation of Fe-N/C oxygen reduction electrocatalysts: Gas sorption, physical and electrochemical investigation using NO and O2
  • DOI:
    10.1016/j.apcatb.2021.120169
  • 发表时间:
    2021-04-21
  • 期刊:
  • 影响因子:
    22.1
  • 作者:
    Boldrin, Paul;Malko, Daniel;Kucernak, Anthony
  • 通讯作者:
    Kucernak, Anthony
Ti-Based Reference Electrodes for Inline Implementation into Lithium-Ion Pouch Cells
用于锂离子软包电池内联实施的钛基参比电极
  • DOI:
    10.1002/ente.202100602
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Ahmed Z
  • 通讯作者:
    Ahmed Z
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Monroe其他文献

Assessing Process Control in the Foundry
  • DOI:
    10.1007/s40962-024-01375-9
  • 发表时间:
    2024-06-07
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Rebecca R. Ward;Charles Monroe
  • 通讯作者:
    Charles Monroe
Predicting the occurrence and effects of defects in castings
  • DOI:
    10.1007/s11837-005-0092-3
  • 发表时间:
    2005-05-01
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Malcolm Blair;Raymond Monroe;Christoph Beckermann;Richard Hardin;Kent Carlson;Charles Monroe
  • 通讯作者:
    Charles Monroe
Use of Published Experimental Results to Validate Approaches to Gray and Ductile Iron Mechanical Properties Prediction
  • DOI:
    10.1007/s40962-016-0126-3
  • 发表时间:
    2017-01-10
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Siddhartha Biswas;Charles Monroe;Thomas Prucha
  • 通讯作者:
    Thomas Prucha

Charles Monroe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Monroe', 18)}}的其他基金

CAREER: Investigation of Non-Aqueous Single-Metal Redox Flow Batteries through Experiment and Modeling
职业:通过实验和建模研究非水单金属氧化还原液流电池
  • 批准号:
    1253544
  • 财政年份:
    2013
  • 资助金额:
    $ 233.36万
  • 项目类别:
    Standard Grant

相似国自然基金

WASP家族蛋白WAVE2调节T细胞静息和活化的机制研究
  • 批准号:
    32300748
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
四阶奇异摄动Bi-wave问题各向异性网格有限元方法一致收敛性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
细胞骨架调节蛋白WAVE2维护免疫耐受及抑制自身免疫的机制研究
  • 批准号:
    32270940
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
WAVE1/KMT2A甲基化作用调控上皮性卵巢癌增殖转移的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
WAVE1 调控脓毒症免疫代谢反应的分子机制
  • 批准号:
    2021JJ31110
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
利用光学系统研究空间Rogue Wave的控制和预测
  • 批准号:
    12004282
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
WASp家族Verprolin同源蛋白WAVE2调节T细胞免疫稳态和抗原特异性免疫应答的机制研究
  • 批准号:
    31970841
  • 批准年份:
    2019
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
复微分方程的亚纯解和偏微分方程的rogue wave解
  • 批准号:
    11701382
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
植物SCAR/WAVE复合体与线粒体协同调节的自噬机制及其对柑橘果实品质的影响
  • 批准号:
    31772281
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
WAVE2调控SATB1促进Tfh细胞分化在系统性红斑狼疮发病机制中的研究
  • 批准号:
    81673058
  • 批准年份:
    2016
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目

相似海外基金

I-Corps: Surface-wave-based sensing of strength and stiffness of soft materials
I-Corps:基于表面波的软材料强度和刚度传感
  • 批准号:
    2327142
  • 财政年份:
    2023
  • 资助金额:
    $ 233.36万
  • 项目类别:
    Standard Grant
Research Towards Future Gravitational-Wave Observatories: Lasers, Optics, Materials, Devices, and Simulations
未来引力波天文台的研究:激光、光学、材料、设备和模拟
  • 批准号:
    2309242
  • 财政年份:
    2023
  • 资助金额:
    $ 233.36万
  • 项目类别:
    Standard Grant
Next Generation Quantum Detector Utilising Engineered Materials for Short-wave Infrared Applications
利用工程材料进行短波红外应用的下一代量子探测器
  • 批准号:
    EP/W028166/1
  • 财政年份:
    2023
  • 资助金额:
    $ 233.36万
  • 项目类别:
    Fellowship
Development of a THz wave pump electron diffraction probe system for study on strong electric field induced phenomena in materials
开发太赫兹波泵电子衍射探针系统用于研究材料中的强电场感应现象
  • 批准号:
    23H01101
  • 财政年份:
    2023
  • 资助金额:
    $ 233.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on the development of thin dielectric lens with functionally graded materials for next-generation millimeter-wave sensors
用于下一代毫米波传感器的功能梯度材料薄介电透镜的开发研究
  • 批准号:
    22K04097
  • 财政年份:
    2022
  • 资助金额:
    $ 233.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of coating materials and jointing techniques for future gravitational wave detectors
未来引力波探测器涂层材料和连接技术的开发
  • 批准号:
    2748219
  • 财政年份:
    2022
  • 资助金额:
    $ 233.36万
  • 项目类别:
    Studentship
ELECTRON, ION, OPTICAL, ACOUSTIC, SONAR AND RADIO WAVE IMAGING SYSTEMS FOR CHARACTERIZING ADVANCED MATERIALS AND MATTER
用于表征先进材料和物质的电子、离子、光学、声学、声纳和无线电波成像系统
  • 批准号:
    RGPIN-2017-03805
  • 财政年份:
    2022
  • 资助金额:
    $ 233.36万
  • 项目类别:
    Discovery Grants Program - Individual
Mesoscopic Wave Physics of Heterogeneous Complex Materials
异质复杂材料的介观波物理
  • 批准号:
    RGPIN-2022-04130
  • 财政年份:
    2022
  • 资助金额:
    $ 233.36万
  • 项目类别:
    Discovery Grants Program - Individual
ELECTRON, ION, OPTICAL, ACOUSTIC, SONAR AND RADIO WAVE IMAGING SYSTEMS FOR CHARACTERIZING ADVANCED MATERIALS AND MATTER
用于表征先进材料和物质的电子、离子、光学、声学、声纳和无线电波成像系统
  • 批准号:
    RGPIN-2017-03805
  • 财政年份:
    2021
  • 资助金额:
    $ 233.36万
  • 项目类别:
    Discovery Grants Program - Individual
Wave Physics of Complex Mesoscopic Materials
复杂介观材料的波物理
  • 批准号:
    RGPIN-2016-06042
  • 财政年份:
    2021
  • 资助金额:
    $ 233.36万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了