Circular4.0: Data Driven Intelligence for a Circular Economy
Circular4.0:数据驱动的智能循环经济
基本信息
- 批准号:EP/R032041/2
- 负责人:
- 金额:$ 92.75万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Circular approaches to design, manufacture and services are proposed as one of the most significant opportunities to radically re-think how we use and re-use finite resources. Pairing the digital revolution with the principles of a Circular Economy (CE) has the potential to radically transform the industrial landscape and its relationship to materials and finite resources, thus unlocking additional value for the manufacturing sector. Despite meaningful success by a handful of manufacturers to move towards more sustainable practices through the use of data-driven intelligence, it is unclear which CE strategy is the most valuable for a business and at what time in a products lifecycle it should be implemented. As such, this research aims to identify how data from products in use can inform intelligent decisions surrounding the implementation of Circular Economy strategies so as to accelerate the implementation of circular approaches to resource use within UK manufacturing.Multiple research efforts and best practice examples have shown that a transition towards a Circular Economy can bring about lasting benefits from a more innovative, resilient and productive economy. This is particularly prevalent for manufacturing as it offers one of the biggest potentials for economic and environmental impact of any sector. It is estimated that materials savings alone in the European Union could amount to USD 630 billion. Digital technology is rapidly becoming a key enabler for unlocking the value from Circular Economy strategies with an estimated 10 billion physical objects with embedded information technology already in existence today and a predicted 50 billion in use by 2020. For the manufacturing sector, the ability to monitor and manage objects in the physical world electronically through data-driven decision-making changes the way that value is created. The capture and analysis of data streams between manufacturing, product and user is already enabling organisations to decouple manufacturing growth from resource consumption through new service offerings, providing customers with added value such as financial savings and safety improvement, and enabling organisations to shift their business model from selling to leasing. This shift in ownership, enabled through access to the right data, brings about a need for manufacturers to design products that last and to integrate processes such as remanufacturing to enable materials and resources to be cycled as many times as possible resulting in significant environmental savings, job creation and up-skilling associated with the development of new processes. Through harnessing digital technological advances to inform decisions on Circular Economy strategies, this research has the opportunity to radically transform UK manufacturing and enable the sector to capture significant value from a Circular Economy that is currently being lost.The originality of this research lies in using data-driven intelligence to optimise the selection of CE strategies for products and the timings of intervention in the product lifecycle. This challenging three year project will bring together an internationally renowned team of experts in Circular Innovation, Manufacturing Informatics and Information Theory from Cranfield University and University of Sheffield drawing on leading-edge strengths of the host institutions and international connections with research communities, companies, business intermediaries and governance at national and international scales. The research team will partner with key players across the manufacturing sector, capable of initiating system level change, to develop novel methods for acquiring and integrating new data streams, uncovering exciting opportunities for new value creation within manufacturing organisations and enabling informed circular interventions surrounding the manufacture and use of products.
设计、制造和服务的循环方法被认为是从根本上重新思考我们如何使用和再利用有限资源的最重要机会之一。将数字革命与循环经济(CE)的原则相结合,有可能从根本上改变工业格局及其与材料和有限资源的关系,从而为制造业释放附加价值。尽管少数制造商通过使用数据驱动的智能来实现更可持续的实践取得了有意义的成功,但目前还不清楚哪种CE策略对企业最有价值,以及应该在产品生命周期的什么时候实施。因此,这项研究旨在确定使用中产品的数据如何为围绕实施循环经济战略的明智决策提供信息,以加速英国制造业内资源利用循环方法的实施。多项研究工作和最佳实践示例表明,向循环经济的转型可以从更具创新性、弹性和生产力的经济中带来持久的利益。这在制造业中尤其普遍,因为它是任何部门中经济和环境影响最大的潜力之一。据估计,仅欧洲联盟的材料节省就可达6300亿美元。数字技术正在迅速成为释放循环经济战略价值的关键推动因素,目前估计已有100亿件实物嵌入了信息技术,预计到2020年将有500亿件实物投入使用。对于制造业来说,通过数据驱动的决策以电子方式监控和管理物理世界中的对象的能力改变了创造价值的方式。对制造、产品和用户之间的数据流的捕获和分析,已经使企业能够通过新的服务产品将制造业增长与资源消耗脱钩,为客户提供附加值,如节省资金和提高安全性,并使企业能够将其商业模式从销售转变为租赁。通过访问正确的数据,所有权的这种转变使制造商需要设计持久的产品,并整合再制造等流程,以使材料和资源尽可能多地循环,从而显著节省环境,创造就业机会并提高与新流程开发相关的技能。通过利用数字技术进步为循环经济战略决策提供信息,这项研究有机会从根本上改变英国制造业,并使该行业能够从目前正在失去的循环经济中获得重要价值。这项研究的独创性在于使用数据驱动的智能来优化产品的CE战略选择和产品生命周期中的干预时机。这个具有挑战性的三年项目将汇集来自克兰菲尔德大学和谢菲尔德大学的循环创新,制造信息学和信息理论的国际知名专家团队,利用主办机构的领先优势以及与研究社区,公司,商业中介机构和国家和国际范围内的治理的国际联系。研究团队将与制造业的主要参与者合作,能够启动系统级变革,开发新的方法来获取和整合新的数据流,发现制造组织内创造新价值的令人兴奋的机会,并围绕产品的制造和使用进行知情的循环干预。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Can Digital Technologies Increase Consumer Acceptance of Circular Business Models? The Case of Second Hand Fashion
数字技术能否提高消费者对循环商业模式的接受度?
- DOI:10.3390/su14084589
- 发表时间:2022
- 期刊:
- 影响因子:3.9
- 作者:Charnley F
- 通讯作者:Charnley F
Circular business models in high value manufacturing: Five industry cases to bridge theory and practice
高价值制造业的循环商业模式:连接理论与实践的五个行业案例
- DOI:10.1002/bse.2715
- 发表时间:2021
- 期刊:
- 影响因子:13.4
- 作者:Okorie O
- 通讯作者:Okorie O
Removing Barriers to Blockchain use in Circular Food Supply Chains: Practitioner Views on Achieving Operational Effectiveness
- DOI:10.1016/j.clscn.2022.100087
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:O. Okorie;Jennifer D. Russell;Yifan Jin;C. Turner;Yongjing Wang;Fiona Charnley
- 通讯作者:O. Okorie;Jennifer D. Russell;Yifan Jin;C. Turner;Yongjing Wang;Fiona Charnley
A Framework to Support a Simulation-Based Understanding of Digitalisation in Remanufacturing Operations
支持基于仿真理解再制造运营中数字化的框架
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Okorie O
- 通讯作者:Okorie O
Simulation to Enable a Data-Driven Circular Economy
- DOI:10.3390/su11123379
- 发表时间:2019-06-02
- 期刊:
- 影响因子:3.9
- 作者:Charnley, Fiona;Tiwari, Divya;Tiwari, Ashutosh
- 通讯作者:Tiwari, Ashutosh
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fiona Charnley其他文献
A decision-making framework for the implementation of remanufacturing in rechargeable energy storage system in hybrid and electric vehicles
混合动力和电动汽车可充电储能系统实施再制造的决策框架
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
O. Okorie;C. Turner;K. Salonitis;Fiona Charnley;Mariale Moreno;A. Tiwari;W. Hutabarat - 通讯作者:
W. Hutabarat
Creating a Taxonomy of Value for a Circular Economy
为循环经济创建价值分类法
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Merryn Haines;Fiona Charnley - 通讯作者:
Fiona Charnley
Energy Efficiency Status-Quo at UK Foundries: The "Small-Is-Beautiful" Project
英国铸造厂的能源效率现状:“小即是美”项目
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
M. Jolly;K. Salonitis;Fiona Charnley;P. Ball;H. Mehrabi;Emanuele Pagone - 通讯作者:
Emanuele Pagone
The Best I Can Be: How Self‐Accountability Impacts Product Choice in Technology‐Mediated Environments
我能做到最好:自我责任如何影响技术介导环境中的产品选择
- DOI:
10.1002/mar.21003 - 发表时间:
2017 - 期刊:
- 影响因子:6.7
- 作者:
Zoe O. Rowe;Hugh Wilson;Radu Dimitriu;Katja Breiter;Fiona Charnley - 通讯作者:
Fiona Charnley
Re-distributed Manufacturing to Achieve a Circular Economy: A Case Study Utilizing IDEF0 Modeling☆
重新分配制造以实现循环经济:利用 IDEF0 建模的案例研究☆
- DOI:
10.1016/j.procir.2017.03.322 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Mariale Moreno;C. Turner;A. Tiwari;W. Hutabarat;Fiona Charnley;Debora Widjaja;Luigi Mondini - 通讯作者:
Luigi Mondini
Fiona Charnley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fiona Charnley', 18)}}的其他基金
UKRI National Interdisciplinary Circular Economy Hub
UKRI国家跨学科循环经济中心
- 批准号:
EP/V029746/1 - 财政年份:2021
- 资助金额:
$ 92.75万 - 项目类别:
Research Grant
Circular4.0: Data Driven Intelligence for a Circular Economy
Circular4.0:数据驱动的智能循环经济
- 批准号:
EP/R032041/1 - 财政年份:2019
- 资助金额:
$ 92.75万 - 项目类别:
Research Grant
RECODE Consumer Goods, Big Data and Re-Distributed Manufacturing
重新编码消费品、大数据和重新分布式制造
- 批准号:
EP/M017567/1 - 财政年份:2015
- 资助金额:
$ 92.75万 - 项目类别:
Research Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Facilitating circular construction practices in the UK: A data driven online marketplace for waste building materials
促进英国的循环建筑实践:数据驱动的废弃建筑材料在线市场
- 批准号:
10113920 - 财政年份:2024
- 资助金额:
$ 92.75万 - 项目类别:
SME Support
N2Vision+: A robot-enabled, data-driven machine vision tool for nitrogen diagnosis of arable soils
N2Vision:一种由机器人驱动、数据驱动的机器视觉工具,用于耕地土壤的氮诊断
- 批准号:
10091423 - 财政年份:2024
- 资助金额:
$ 92.75万 - 项目类别:
Collaborative R&D
Data Driven Discovery of New Catalysts for Asymmetric Synthesis
数据驱动的不对称合成新催化剂的发现
- 批准号:
DP240100102 - 财政年份:2024
- 资助金额:
$ 92.75万 - 项目类别:
Discovery Projects
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
- 批准号:
EP/Y027930/1 - 财政年份:2024
- 资助金额:
$ 92.75万 - 项目类别:
Fellowship
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
- 批准号:
2346707 - 财政年份:2024
- 资助金额:
$ 92.75万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
2402555 - 财政年份:2024
- 资助金额:
$ 92.75万 - 项目类别:
Standard Grant
CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
- 批准号:
2340042 - 财政年份:2024
- 资助金额:
$ 92.75万 - 项目类别:
Continuing Grant
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
- 批准号:
2340089 - 财政年份:2024
- 资助金额:
$ 92.75万 - 项目类别:
Standard Grant
ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
- 批准号:
2301411 - 财政年份:2024
- 资助金额:
$ 92.75万 - 项目类别:
Standard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
- 批准号:
2323984 - 财政年份:2024
- 资助金额:
$ 92.75万 - 项目类别:
Standard Grant














{{item.name}}会员




