Digital Toolkit for optimisation of operators and technology in manufacturing partnerships (DigiTOP)
用于优化制造合作伙伴关系中的操作员和技术的数字工具包 (DigiTOP)
基本信息
- 批准号:EP/R032718/1
- 负责人:
- 金额:$ 242.66万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The manufacturing industry, with the drive towards 'Industrie 4.0', is experiencing a significant shift towards Digital Manufacturing. This increased digitisation and interconnectivity of manufacturing processes is inevitably going to bring substantial change to worker roles and manual tasks by introducing new digital manufacturing technologies (DMT) to shop floor processes. At the same time, the manufacturing workforce is itself also changing - globally and nationally - comprising of an older, more mobile, more culturally diverse and less specialist / skilled labour pool.It may not be enough to simply assume that workers will adopt new roles bestowed upon them; to ensure successful worker acceptance and operational performance of a new system it is important to incorporate user requirements into Digital Manufacturing Technologies design. In the past, Human Factors has shaped the tools used in manufacturing, to make people safe, to make work easy, and to make the workforce more efficient. New approaches to capture and predict the impact of the changes that these new types of technologies, such as robotics, rapidly evolvable workspaces, and data-driven systems are required. These approaches consist of embedded sensor technologies for capture of workplace performance, machine learning and data analytics to synthesise and analyse these data, and new methods of visualisation to support decisions made, potentially in real-time, as to how digital manufacturing workplaces should function. The DigiTOP project will develop the new fundamental knowledge required to reliably and validly capture and predict the performance of a digital manufacturing workplace, integrating the actions and decision of people and technology. It will deliver this knowledge via a Digital Toolkit, which will have three elements: i) Specification of sensor integration and data analytics for performance capture in Digital Manufacturingii) Quantitative analysis of the impact of four industrial Digital Manufacturing use casesiii) Online interactive tool(s) to support manufacturing decision making for implementation of Digital Manufacturing TechnologiesThe DigiTOP project brings together a team with expertise in manufacturing, human factors, robotics and human computer interaction, to develop new methods to capture and predict the impact of Digital Manufacturing on future work. This project will work closely with a range of industry partners, including Jaguar Landrover, BAE Systems, Babcock International and the High Value Manufacturing Catapult to co-create industry-specified use cases to examine. The overall goal of DigiTOP is to produce a toolkit, derived from new fundamental engineering and science knowledge, that will enable industry to increase productivity, support Digital Manufacturing Technology adoption and de-risk the implementation of future Digital Manufacturing Technologies through the consideration of human requirements and capabilities.
随着“工业4.0”的发展,制造业正在经历向数字制造的重大转变。这种制造过程的数字化和互联性的增加不可避免地会通过将新的数字制造技术(DMT)引入车间流程来给工人角色和手工任务带来实质性的变化。与此同时,全球和全国的制造业劳动力本身也在发生变化,包括年龄更大、移动的更多、文化更多样化和专业/技术更少的劳动力。为了确保新系统的成功的工人接受和操作性能,将用户需求纳入数字系统中是很重要的。制造技术设计。在过去,人为因素塑造了制造业中使用的工具,使人们更安全,使工作更容易,并使劳动力更有效率。新的方法来捕捉和预测这些新类型的技术,如机器人技术,快速发展的机器人技术和数据驱动系统的变化的影响是必需的。这些方法包括用于捕获工作场所性能的嵌入式传感器技术,用于合成和分析这些数据的机器学习和数据分析,以及用于支持数字化制造工作场所应如何运作的决策的新的可视化方法。DigiTOP项目将开发可靠有效地捕获和预测数字化制造工作场所的性能所需的新的基础知识,整合人员和技术的行动和决策。它将通过一个数字工具包提供这方面的知识,该工具包将有三个要素:i)用于数字制造中性能捕获的传感器集成和数据分析规范ii)对四个工业数字制造用例的影响进行定量分析iii)在线交互工具支持数字化制造技术实施的制造决策DigiTOP项目汇集了一个具有以下专业知识的团队:制造业,人为因素,机器人和人机交互,开发新的方法来捕捉和预测数字制造对未来工作的影响。该项目将与一系列行业合作伙伴密切合作,包括Jaguar Landrover,BAE Systems,Babcock International和High Value Manufacturing Catapult,共同创建行业指定的用例。DigiTOP的总体目标是生产一个工具包,来自新的基础工程和科学知识,这将使行业能够提高生产力,支持数字制造技术的采用,并通过考虑人类的需求和能力来降低未来数字制造技术实施的风险。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Physiological Data Measurement in Digital Manufacturing
数字制造中的生理数据测量
- DOI:10.1109/icmt53429.2021.9687200
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Agrawal S
- 通讯作者:Agrawal S
Physiological indicators of task demand, fatigue, and cognition in future digital manufacturing environments
- DOI:10.1016/j.ijhcs.2020.102522
- 发表时间:2021-01-01
- 期刊:
- 影响因子:5.4
- 作者:Argyle, Elizabeth M.;Marinescu, Adrian;Sharples, Sarah
- 通讯作者:Sharples, Sarah
Augmented reality training for improved learnability
增强现实培训可提高可学习性
- DOI:10.1016/j.cirpj.2023.11.003
- 发表时间:2024
- 期刊:
- 影响因子:4.8
- 作者:Ariansyah D
- 通讯作者:Ariansyah D
Investigating the Impact of Human in-the-Loop Digital Twin in an Industrial Maintenance Context
研究人在环数字孪生在工业维护环境中的影响
- DOI:10.2139/ssrn.3717797
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Al-Yacoubb A
- 通讯作者:Al-Yacoubb A
Effective Human-Robot Collaboration Through Wearable Sensors
- DOI:10.1109/etfa46521.2020.9212100
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:Ali Al-Yacoub;A. Buerkle;Myles Flanagan;P. Ferreira;Ella‐Mae Hubbard;N. Lohse
- 通讯作者:Ali Al-Yacoub;A. Buerkle;Myles Flanagan;P. Ferreira;Ella‐Mae Hubbard;N. Lohse
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Sharples其他文献
A novel spatiotemporal home heating controller design: System emulation and field testing
- DOI:
10.1016/j.buildenv.2018.02.027 - 发表时间:
2018-05-01 - 期刊:
- 影响因子:
- 作者:
Martin Kruusimägi;Sarah Sharples;Darren Robinson - 通讯作者:
Darren Robinson
A Context-based Study on Serendipity in Information Research among Chinese Scholars.
中国学者信息研究中偶然性的情境研究。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:2.1
- 作者:
Xiaosong Zhou;Xu Sun;Sarah Sharples;Qingfeng Wang - 通讯作者:
Qingfeng Wang
Schematic maps in MobileGIS environments: an automated simulated annealing based case study
- DOI:
10.1007/s10339-006-0043-0 - 发表时间:
2006-08-01 - 期刊:
- 影响因子:1.400
- 作者:
Suchith Anand;J. Mark Ware;Sarah Sharples;Mike Jackson;Jim Nixon - 通讯作者:
Jim Nixon
Informatics in Out of Hours Service Delivery: Methods and Applications to Inform Health Care Policy and Management
非工作时间服务提供中的信息学:为医疗保健政策和管理提供信息的方法和应用
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Iker Perez;Michael A. Brown;J. Pinchin;S. Martindale;Sarah Sharples;D. Shaw;J. Blakey - 通讯作者:
J. Blakey
A cross-sector analysis of human and organisational factors in the deployment of data-driven predictive maintenance
- DOI:
10.1007/s10257-017-0343-1 - 发表时间:
2017-05-22 - 期刊:
- 影响因子:3.600
- 作者:
David Golightly;Genovefa Kefalidou;Sarah Sharples - 通讯作者:
Sarah Sharples
Sarah Sharples的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Sharples', 18)}}的其他基金
Connected Everything II: Accelerating Digital Manufacturing Research Collaboration and Innovation
万物互联 II:加速数字化制造研究合作与创新
- 批准号:
EP/S036113/1 - 财政年份:2019
- 资助金额:
$ 242.66万 - 项目类别:
Research Grant
Network Plus: Industrial Systems in the Digital Age
网络+:数字时代的工业系统
- 批准号:
EP/P001246/1 - 财政年份:2016
- 资助金额:
$ 242.66万 - 项目类别:
Research Grant
Digital Economy Doctoral Training Network
数字经济博士培养网
- 批准号:
EP/L011891/1 - 财政年份:2014
- 资助金额:
$ 242.66万 - 项目类别:
Research Grant
相似海外基金
SCC-PG WECAN Smart Toolkit: Wellbeing Enhancement through Crowd-sourced Assessment of Neighborhood-infrastructure
SCC-PG WECAN 智能工具包:通过社区基础设施众包评估增强福祉
- 批准号:
2332339 - 财政年份:2024
- 资助金额:
$ 242.66万 - 项目类别:
Standard Grant
Smart Cues Toolkit: Supporting Physical Activity at Home with Interactive Contextual Cues
智能提示工具包:通过交互式上下文提示支持家庭体育活动
- 批准号:
EP/X036766/1 - 财政年份:2024
- 资助金额:
$ 242.66万 - 项目类别:
Research Grant
A genomic toolkit to future-proof the seaweed industry
面向未来的海藻行业的基因组工具包
- 批准号:
IE230100464 - 财政年份:2024
- 资助金额:
$ 242.66万 - 项目类别:
Early Career Industry Fellowships
Generative AI toolkit to enforce regulatory requirements and enable capacity for increased corporate transparency.
生成式人工智能工具包,用于执行监管要求并提高企业透明度。
- 批准号:
10098889 - 财政年份:2024
- 资助金额:
$ 242.66万 - 项目类别:
Collaborative R&D
Building an epidemiological modelling toolkit for epidemic preparedness
构建流行病学建模工具包以做好流行病防范
- 批准号:
MR/Z503939/1 - 财政年份:2024
- 资助金额:
$ 242.66万 - 项目类别:
Research Grant
An enhanced toolkit for Botrytis control in protected cropping
保护性种植中灰霉病控制的增强工具包
- 批准号:
BB/Z514755/1 - 财政年份:2024
- 资助金额:
$ 242.66万 - 项目类别:
Research Grant
IP23-006 VIMP: A Discourse-Aware, Community-Informed Toolkit to Predict Virality and Impact of Vaccine Misinformation Contents
IP23-006 VIMP:一个具有话语感知、社区知情的工具包,用于预测疫苗错误信息内容的病毒性和影响
- 批准号:
10762193 - 财政年份:2024
- 资助金额:
$ 242.66万 - 项目类别:
Multipurpose Electronics Toolkit using Suspended Membranes: towards Systems on Nothing
使用悬浮膜的多用途电子工具包:走向无源系统
- 批准号:
EP/Y000196/1 - 财政年份:2024
- 资助金额:
$ 242.66万 - 项目类别:
Research Grant
400 Million Years of Food Transport in Plants: unearthing the origin, diversity and genetic toolkit of vasculature
植物中 4 亿年的食物运输:挖掘脉管系统的起源、多样性和遗传工具包
- 批准号:
MR/Y03399X/1 - 财政年份:2024
- 资助金额:
$ 242.66万 - 项目类别:
Fellowship
MISTRAL a toolkit for dynaMic health Impact analysiS to predicT disability-Related costs in the Aging population based on three case studies of steeL-industry exposed areas in Europe
MISTRAL 动态健康影响分析工具包,基于欧洲钢铁行业暴露地区的三个案例研究,预测老龄化人口中与残疾相关的成本
- 批准号:
10063764 - 财政年份:2023
- 资助金额:
$ 242.66万 - 项目类别:
EU-Funded