SOFTWARE DEFINED MATERIALS FOR DYNAMIC CONTROL OF ELECTROMAGNETIC WAVES (ANIMATE)
用于电磁波动态控制的软件定义材料(动画)
基本信息
- 批准号:EP/R035393/1
- 负责人:
- 金额:$ 169.66万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Inspired by recent scientific breakthroughs in the area of transformation optics (TO) and metamaterials, QMUL in collaboration with its partners and UK industries have demonstrated several novel antenna solutions which potentially offer new composite flat lens antenna, surface wave and metasurface devices that could be embedded into the skin of vehicles without compromising aerodynamic performance, representing a major leap forward for future technologies related to the Internet of Things (IoT), CubeSat and Space Communications. The potential of the underlying design approaches have much wider applicability in arguably all technical challenges as addressed above. For example, we extended the TO technique to design novel beam steerable antennas . Instead of moving or tilting the feed/reflctor, we employ an alternative way to manipulate the reflected emission by varying the permittivity of dielectrics derived from TO. This method has the merits of maintaining a flat profile, being capable of beam-steering and frequeny agility. Combining with appropriate feed designs, the system can be effectively be used as either a single radiator or an array fulfilling massive MIMO functions. In a broad sense, dielectric substrates with spatially varying permittivity and/or permeability can be regarded as a "magic black box", whose properties are programmable according to required functional requirements. In the proposed ANIMATE project, we refer to this magic black box as "software defined materials", since they demonstrate far-reaching capabilities well beyond conventional antennas and arguably in all devices and systems that exploit electromagnetic spectra. To enable this step change, a suite of novel advanced materials must be studied and developed, especially, active materials and structures with low loss, high tunability but low DC power dissipation are desirable. In addition, a robust biasing network is needed so that material building blocks can be individually controlled. In spite of the longstanding quest and intensive research over the years, this subject area still remains insufficiently explored. With ongoing advances in modelling and manufacturing tools, it is now possible to revisit some fundamental limits imposed on conventional materials and antenna designs. The vision of ANIMATE is therefore to unlock contributions and expertise from multiple disciplines, to develop a core programme of research on software defined materials, which will enable dynamic control of electromagnetic waves for applications in sensing, communications and computation.The ultimate objective of ANIMATE is to remove the traditional boundary between the designs of antennas and RF/microwave electronics as well as materials and devices, so that a generic material platform can be developed that is programmable and flexible for multifunctional applications integrating communication, sensing and computation. Specifically, in this project, we will:1. Establish a holistic approach of software-defined materials for communication, sensing and computation, by building novel integrated and adaptive antenna technologies.2. Integrate wireless sensor networks into the design of computer interface and control units for tunable materials to demonstrate and validate the wholly new concept of "networked materials" at subwavelength scales.3. Exploit challenging applications of proposed antenna and material technologies with our core industrial partners at all stages of development: prototyping, manufacturing, toolbox validation, platform integration and testing. 4. Research novel active and tunable materials and investigate fundamental limits of relevant materials to industrial challenges.5. Develop simulation tools that span from materials, device and process modeling with intricate complexities that open up the design domain significantly and enable the production of optimal structures with improved performance.
受最近在变形光学(TO)和超材料领域的科学突破的启发,QMUL与其合作伙伴和英国行业合作展示了几种新型天线解决方案,这些解决方案可能提供新型复合平板透镜天线、表面波和亚表面设备,可以嵌入车辆的皮肤中,而不会影响空气动力学性能,这代表着未来物联网(IoT)、立方体卫星和空间通信相关技术的重大飞跃。基本设计方法的潜力具有更广泛的适用性,可以说适用于上文提到的所有技术挑战。例如,我们将TO技术扩展到设计新型波束可控天线。我们没有移动或倾斜馈电/反射器,而是采用了一种替代的方法来控制反射发射,方法是改变由T0导出的介质的介电常数。该方法具有轮廓平坦、波束可调、频率灵敏等优点。结合合适的馈电设计,该系统可以有效地用作单个辐射器或实现大规模MIMO功能的阵列。在广义上,具有空间变化的介电常数和/或磁导率的介质衬底可以被视为一个魔术黑盒,其特性可以根据所需的功能要求进行编程。在拟议的动画项目中,我们将这种神奇的黑匣子称为“软件定义的材料”,因为它们展示了远远超出传统天线的深远能力,而且可以说在所有利用电磁频谱的设备和系统中都具有这种能力。为了实现这一阶跃变化,必须研究和开发一套新型的先进材料,特别是要求具有低损耗、高可调谐和低直流功耗的活性材料和结构。此外,还需要一个强大的偏置网络,以便可以单独控制材料构建块。尽管多年来人们进行了长期的探索和深入的研究,但这一课题领域仍然没有得到足够的探索。随着建模和制造工具的不断进步,现在有可能重新审视对传统材料和天线设计施加的一些基本限制。因此,Animate的愿景是释放来自多个学科的贡献和专业知识,开发软件定义材料的核心研究计划,使电磁波能够在传感、通信和计算应用中动态控制。Animate的最终目标是消除天线和射频/微波电子学以及材料和器件设计之间的传统界限,以便为集通信、传感和计算为一体的多功能应用开发一个可编程的、灵活的通用材料平台。具体地说,在这个项目中,我们将:1.通过建立新的集成和自适应天线技术,建立用于通信、传感和计算的软件定义材料的整体方法。将无线传感器网络集成到可调谐材料的计算机接口和控制单元的设计中,在亚波长尺度上演示和验证“网络材料”的全新概念。在开发的所有阶段,与我们的核心工业合作伙伴一起开发拟议的天线和材料技术的具有挑战性的应用:原型、制造、工具箱验证、平台集成和测试。4.研究新型活性和可调谐材料,研究相关材料对工业挑战的基本极限。开发从材料、器件和工艺建模到复杂复杂的模拟工具,极大地开拓设计领域,并使优化结构的生产具有更高的性能。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Study on Sparse MIMO Array for Compressive Sensing Imaging
压缩感知成像稀疏MIMO阵列研究
- DOI:10.1109/cama.2018.8530675
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Cheng Q
- 通讯作者:Cheng Q
Antennas and Propagation Research From Large-Scale Unstructured Data With Machine Learning: A review and predictions
- DOI:10.1109/map.2023.3290385
- 发表时间:2023-10
- 期刊:
- 影响因子:3.5
- 作者:Young-ok Cha;A. Ihalage;Yang Hao
- 通讯作者:Young-ok Cha;A. Ihalage;Yang Hao
Optimal Observer Synthesis for Microgrids With Adaptive Send-on-Delta Sampling Over IoT Communication Networks
- DOI:10.1109/tie.2020.3034853
- 发表时间:2020-11
- 期刊:
- 影响因子:7.7
- 作者:S. A. Alavi;K. Mehran;Y. Hao
- 通讯作者:S. A. Alavi;K. Mehran;Y. Hao
Noise figure of electromagnetic systems with parity and time-reversal symmetry
具有奇偶性和时间反演对称性的电磁系统的噪声系数
- DOI:10.1364/oe.27.031363
- 发表时间:2019
- 期刊:
- 影响因子:3.8
- 作者:Farooq H
- 通讯作者:Farooq H
A Generic Spiral MIMO Array Design Method for Short-Range UWB Imaging
- DOI:10.1109/lawp.2020.2982147
- 发表时间:2020-05
- 期刊:
- 影响因子:4.2
- 作者:Qiao Cheng;Yujie Liu;Haoyang Zhang;Y. Hao
- 通讯作者:Qiao Cheng;Yujie Liu;Haoyang Zhang;Y. Hao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Y Hao其他文献
Lipid stimulated secretion of CCK is mediated by CCK-releasing peptide (Diazepam binding inhibitor): Involvement of mucosal serotonin and submucosal substance P and cholinergic neurons
- DOI:
10.1016/s0016-5085(98)81889-1 - 发表时间:
1998-04-15 - 期刊:
- 影响因子:
- 作者:
Y Hao;Y Li;C Owyang - 通讯作者:
C Owyang
Y Hao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Y Hao', 18)}}的其他基金
Digital Transformation of Electromagnetic Material Design and Manufacturing for Future Wireless Connectivity (DREAM)
面向未来无线连接的电磁材料设计和制造的数字化转型 (DREAM)
- 批准号:
EP/X02542X/1 - 财政年份:2023
- 资助金额:
$ 169.66万 - 项目类别:
Research Grant
Transmission Channels Measurements and Communication System Design for Future mmWave Communications (mmWave TRACCS)
未来毫米波通信的传输通道测量和通信系统设计 (mmWave TRACCS)
- 批准号:
EP/W026732/1 - 财政年份:2022
- 资助金额:
$ 169.66万 - 项目类别:
Research Grant
THz Antenna Fabrication and Measurement Facilities (TERRA)
太赫兹天线制造和测量设施 (TERRA)
- 批准号:
EP/S010009/1 - 财政年份:2018
- 资助金额:
$ 169.66万 - 项目类别:
Research Grant
TERAhertz high power LINKS using photonic devices, tube amplifiers and Smart antennas (TERALINKS)
使用光子器件、电子管放大器和智能天线的太赫兹高功率链路 (TERALINKS)
- 批准号:
EP/P016421/1 - 财政年份:2017
- 资助金额:
$ 169.66万 - 项目类别:
Research Grant
Adaptive Tools for Electromagnetics and Materials Modelling to Bridge the Gap between Design and Manufacturing (AOTOMAT)
用于弥合设计与制造之间差距的电磁学和材料建模自适应工具 (AOTOMAT)
- 批准号:
EP/P005578/1 - 财政年份:2016
- 资助金额:
$ 169.66万 - 项目类别:
Research Grant
The Quest for Ultimate Electromagnetics using Spatial Transformations (QUEST)
利用空间变换探索终极电磁学 (QUEST)
- 批准号:
EP/I034548/1 - 财政年份:2011
- 资助金额:
$ 169.66万 - 项目类别:
Research Grant
PATRICIAN: New Paradigms for Body Centric Wireless Communications at MM Wavelengths
PATRICAN:MM 波长以身体为中心的无线通信新范式
- 批准号:
EP/I009019/1 - 财政年份:2011
- 资助金额:
$ 169.66万 - 项目类别:
Research Grant
iRFSim for BSNs -Imaging based subject-specific RF simulation environment for wearable and implantable wireless Body Sensor Networks (BSNs)
iRFSim for BSN - 用于可穿戴和植入式无线身体传感器网络 (BSN) 的基于成像的特定主题射频仿真环境
- 批准号:
EP/E057624/1 - 财政年份:2007
- 资助金额:
$ 169.66万 - 项目类别:
Research Grant
Wearable Antennas for Body-Centric Wireless Networks
用于以身体为中心的无线网络的可穿戴天线
- 批准号:
EP/E030270/1 - 财政年份:2007
- 资助金额:
$ 169.66万 - 项目类别:
Research Grant
Follow On: Electromagnetic BandGap Enhanced Active Conical Horn Antenna Arrays
后续:电磁带隙增强型有源锥形喇叭天线阵列
- 批准号:
EP/E502865/1 - 财政年份:2006
- 资助金额:
$ 169.66万 - 项目类别:
Research Grant
相似海外基金
Advanced Materials from Automated Synthesis of Sequence-Defined Polymers
序列定义聚合物自动合成的先进材料
- 批准号:
DP230101739 - 财政年份:2023
- 资助金额:
$ 169.66万 - 项目类别:
Discovery Projects
Sequence-Defined Pi-Conjugated Materials for Organic Electronics
用于有机电子器件的序列定义的 Pi 共轭材料
- 批准号:
2898630 - 财政年份:2023
- 资助金额:
$ 169.66万 - 项目类别:
Studentship
New Synthetic Routes to Well-Defined Nanocarbon Materials
明确纳米碳材料的新合成路线
- 批准号:
2103696 - 财政年份:2021
- 资助金额:
$ 169.66万 - 项目类别:
Continuing Grant
Synthesis of well-defined biodegradable polymers and study of their materials properties
明确的可生物降解聚合物的合成及其材料性能的研究
- 批准号:
2530935 - 财政年份:2021
- 资助金额:
$ 169.66万 - 项目类别:
Studentship
CAREER: Sequence Defined Peptoid Materials for Selective Biodegradation
职业:用于选择性生物降解的序列定义的类肽材料
- 批准号:
2046746 - 财政年份:2021
- 资助金额:
$ 169.66万 - 项目类别:
Continuing Grant
Metal‐organic frameworks as molecularly defined single‐site catalysts and precursor species for bimetallic Co/Fe materials in liquid phase oxidation reactions (C06)
金属有机框架作为分子定义的单位点催化剂和液相氧化反应中双金属 Co/Fe 材料的前体物质 (C06)
- 批准号:
421304734 - 财政年份:2019
- 资助金额:
$ 169.66万 - 项目类别:
CRC/Transregios
Functional Materials Based on Well-Defined Colloidal Nanoscale Blocks for Applications in Sensing, Photoelectrochemistry, and Environmental Remediation
基于明确的胶体纳米级块的功能材料,用于传感、光电化学和环境修复应用
- 批准号:
RGPIN-2014-05635 - 财政年份:2018
- 资助金额:
$ 169.66万 - 项目类别:
Discovery Grants Program - Individual
Functional Materials Based on Well-Defined Colloidal Nanoscale Blocks for Applications in Sensing, Photoelectrochemistry, and Environmental Remediation
基于明确的胶体纳米级块的功能材料,用于传感、光电化学和环境修复应用
- 批准号:
RGPIN-2014-05635 - 财政年份:2017
- 资助金额:
$ 169.66万 - 项目类别:
Discovery Grants Program - Individual
Functional Materials Based on Well-Defined Colloidal Nanoscale Blocks for Applications in Sensing, Photoelectrochemistry, and Environmental Remediation
基于明确的胶体纳米级块的功能材料,用于传感、光电化学和环境修复应用
- 批准号:
RGPIN-2014-05635 - 财政年份:2016
- 资助金额:
$ 169.66万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Well-Defined Hybrid Materials as a Versatile Tool to Study Energy Transfer Processes
职业:定义明确的混合材料作为研究能量转移过程的多功能工具
- 批准号:
1553634 - 财政年份:2016
- 资助金额:
$ 169.66万 - 项目类别:
Continuing Grant