Transforming networks - building an intelligent optical infrastructure (TRANSNET)

网络转型——构建智能光基础设施(TRANSNET)

基本信息

  • 批准号:
    EP/R035342/1
  • 负责人:
  • 金额:
    $ 778.02万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    未结题

项目摘要

Optical networks underpin the global digital communications infrastructure, and their development has simultaneously stimulated the growth in demand for data, and responded to this demand by unlocking the capacity of fibre-optic channels. The work within the UNLOC programme grant proved successful in understanding the fundamental limits in point-to-point nonlinear fibre channel capacity. However, the next-generation digital infrastructure needs more than raw capacity - it requires channel and flexible resource and capacity provision in combination with low latency, simplified and modular network architectures with maximum data throughput, and network resilience combined with overall network security. How to build such an intelligent and flexible network is a major problem of global importance. To cope with increasingly dynamic variations of delay-sensitive demands within the network and to enable the Internet of Skills, current optical networks overprovision capacity, resulting in both over- engineering and unutilised capacity. A key challenge is, therefore, to understand how to intelligently utilise the finite optical network resources to dynamically maximise performance, while also increasing robustness to future unknown requirements. The aim of TRANSNET is to address this challenge by creating an adaptive intelligent optical network that is able to dynamically provide capacity where and when it is needed - the backbone of the next-generation digital infrastructure.Our vision and ambition is to introduce intelligence into all levels of optical communication, cloud and data centre infrastructure and to develop optical transceivers that are optimally able to dynamically respond to varying application requirements of capacity, reach and delay. We envisage that machine learning (ML) will become ubiquitous in future optical networks, at all levels of design and operation, from digital coding, equalisation and impairment mitigation, through to monitoring, fault prediction and identification, and signal restoration, traffic pattern prediction and resource planning. TRANSNET will focus on the application of machine techniques to develop a new family of optical transceiver technologies, tailored to the needs of a new generation of self-x (x = configuring, monitoring, planning, learning, repairing and optimising) network architectures, capable of taking account of physical channel properties and high-level applications while optimising the use of resources. We will apply ML techniques to bring together the physical layer and the network; the nonlinearity of the fibres brings about a particularly complex challenge in the network context as it creates an interdependence between the signal quality of all transmitted wavelength channels. When optimising over tens of possible modulation formats, for hundreds of independent channels, over thousands of kilometres, a brute force optimisation becomes unfeasible. Particular challenges are the heterogeneity of large scale networks and the computational complexity of optimising network topology and resource allocation, as well as dynamical and data-driven management, monitoring and control of future networks, which requires a new way of thinking and tailored methodology.We propose to reduce the complexity of network design to allow self-learned network intelligence and adaptation through a combination of machine learning and probabilistic techniques. This will lead to the creation of computationally efficient approaches to deal with the complexity of the emerging nonlinear systems with memory and noise, for networks that operate dynamically on different time- and length-scales. This is a fundamentally new approach to optical network design and optimisation, requiring a cross-disciplinary approach to advance machine learning and heuristic algorithm design based on the understanding of nonlinear physics, signal processing and optical networking.
光网络是全球数字通信基础设施的基础,光网络的发展同时刺激了数据需求的增长,并通过释放光纤通道的容量来满足这一需求。在UNESCO方案赠款范围内开展的工作证明在了解点对点非线性光纤通道容量的基本限制方面是成功的。然而,下一代数字基础设施需要的不仅仅是原始容量,它还需要通道和灵活的资源和容量供应,以及低延迟、简化和模块化的网络架构,这些架构具有最大的数据吞吐量,以及网络弹性和整体网络安全性。如何建设这样一个智能、灵活的网络是一个具有全球重要性的重大问题。为了科普网络内对延迟敏感的需求的日益动态的变化并且为了实现技能互联网,当前的光网络过度供应容量,导致过度工程化和未利用的容量。因此,一个关键的挑战是了解如何智能地利用有限的光网络资源来动态地最大化性能,同时还提高对未来未知需求的鲁棒性。TRANSNET的目标是通过创建一个自适应智能光网络来应对这一挑战,该网络能够在需要时随时随地动态提供容量-下一代数字基础设施的骨干。我们的愿景和雄心是将智能引入各级光通信,我们的目标是建立云和数据中心基础设施,并开发能够动态响应不同应用对容量、覆盖范围和延迟要求的光收发器。我们设想,机器学习(ML)将在未来的光网络中无处不在,在设计和运营的各个层面,从数字编码,均衡和减损缓解,到监控,故障预测和识别,信号恢复,流量模式预测和资源规划。TRANSNET将侧重于机器技术的应用,以开发一系列新的光收发两用机技术,以满足新一代自x(x =配置、监控、规划、学习、修复和优化)网络体系结构的需要,能够考虑物理信道特性和高级应用,同时优化资源的使用。我们将应用ML技术将物理层和网络结合在一起;光纤的非线性在网络环境中带来了特别复杂的挑战,因为它在所有传输波长通道的信号质量之间建立了相互依赖性。当优化数十种可能的调制格式时,对于数百个独立信道,在数千公里内,蛮力优化变得不可行。特别的挑战是大规模网络的异构性和优化网络拓扑和资源分配的计算复杂性,以及未来网络的动态和数据驱动的管理、监测和控制,这需要一种新的思维方式和量身定制的方法。我们建议降低网络设计的复杂性,通过机器学习和概率技术的结合,学习网络智能和适应能力。这将导致创建计算效率高的方法来处理新兴的非线性系统的复杂性与内存和噪声,网络动态运行在不同的时间和长度尺度。这是一种全新的光网络设计和优化方法,需要跨学科的方法来推进机器学习和启发式算法设计,基于对非线性物理,信号处理和光网络的理解。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Control plane hardware design for optical packet switched data centre networks
  • DOI:
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paris Andreades
  • 通讯作者:
    Paris Andreades
Pump Optimization of E-band Bismuth-Doped Fiber Amplifier
E 波段掺铋光纤放大器的泵浦优化
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aleksandr Donodin
  • 通讯作者:
    Aleksandr Donodin
Neural-network-based pre-distortion method to compensate for low resolution DAC nonlinearity
基于神经网络的预失真方法可补偿低分辨率 DAC 非线性
  • DOI:
    10.1049/cp.2019.0971
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abu-Romoh M
  • 通讯作者:
    Abu-Romoh M
38 dB Gain E-band Bismuth-doped Fiber Amplifier
38 dB 增益 E 波段掺铋光纤放大器
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alekdandr Donodin
  • 通讯作者:
    Alekdandr Donodin
A Memory-Efficient Learning Framework for Symbol Level Precoding With Quantized NN Weights
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Polina Bayvel其他文献

PULSE: SCALABLE SUB-µ s WDM-TDM CIRCUIT SWITCHED DATA CENTER NETWORK
脉冲:可扩展的 SUB-μs WDM-TDM 电路交换数据中心网络
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joshua L. Benjamin;T. Gerard;Polina Bayvel;G. Zervas
  • 通讯作者:
    G. Zervas
Distributed feedback semiconductor lasers John Carroll, James Whiteway and Dick Plumb
  • DOI:
    10.1023/a:1006945920291
  • 发表时间:
    1999-03-01
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Polina Bayvel
  • 通讯作者:
    Polina Bayvel
Reflections on a pioneer in electrical engineering
对电气工程先驱的思考
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Polina Bayvel
  • 通讯作者:
    Polina Bayvel

Polina Bayvel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Polina Bayvel', 18)}}的其他基金

Advanced Signal Generation And Detection System For Next-generation Ultra-wideband Communication Networks
用于下一代超宽带通信网络的先进信号生成和检测系统
  • 批准号:
    EP/V007734/1
  • 财政年份:
    2021
  • 资助金额:
    $ 778.02万
  • 项目类别:
    Research Grant
UNLOC
解锁
  • 批准号:
    EP/J017582/1
  • 财政年份:
    2012
  • 资助金额:
    $ 778.02万
  • 项目类别:
    Research Grant
Surface plasmon devices for applications in communication and signal processing
用于通信和信号处理应用的表面等离子体激元器件
  • 批准号:
    EP/E01013X/1
  • 财政年份:
    2007
  • 资助金额:
    $ 778.02万
  • 项目类别:
    Research Grant

相似国自然基金

Lagrange网络实用同步的不连续控制研究
  • 批准号:
    61603174
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于隐半马尔科夫模型的无线传感器网络入侵检测系统研究
  • 批准号:
    61101083
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
活化的星形胶质细胞网络参与脑缺血后神经元损伤的机制研究
  • 批准号:
    81000491
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
面向认知网络的自律计算模型及评价方法研究
  • 批准号:
    60973027
  • 批准年份:
    2009
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
多跳无线 MESH 网络中 QoS 保障算法的研究设计和性能分析
  • 批准号:
    60902041
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
红外高光谱分辨率卫星遥感大气参数反演研究
  • 批准号:
    40475016
  • 批准年份:
    2004
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目
军民两用即兴网(Ad Hoc Networks)的研究
  • 批准号:
    60372093
  • 批准年份:
    2003
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
  • 批准号:
    498310
  • 财政年份:
    2024
  • 资助金额:
    $ 778.02万
  • 项目类别:
    Operating Grants
Collaborative Research: Conference: Strategically Engaging Private Institutions at Building Research Infrastructure, Networks and Knowledge (BRINK) in the Emergence of Research
合作研究:会议:在研究的兴起中战略性地让私营机构参与建设研究基础设施、网络和知识(BRINK)
  • 批准号:
    2324590
  • 财政年份:
    2023
  • 资助金额:
    $ 778.02万
  • 项目类别:
    Standard Grant
Deep South KUH Premier Research- Interdisciplinary Mentored Education (PRIME) Networking Core
深南 KUH 顶级研究 - 跨学科指导教育 (PRIME) 网络核心
  • 批准号:
    10724929
  • 财政年份:
    2023
  • 资助金额:
    $ 778.02万
  • 项目类别:
Process of Building Educational Support Networks of Undocumented Students : Comparison Between Japan and the United States
无证学生教育支持网络的构建过程:日本与美国的比较
  • 批准号:
    22KJ0665
  • 财政年份:
    2023
  • 资助金额:
    $ 778.02万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
National Research Mentoring Network (NRMN) Coordination Center Supplement
国家研究指导网络 (NRMN) 协调中心补充资料
  • 批准号:
    10818933
  • 财政年份:
    2023
  • 资助金额:
    $ 778.02万
  • 项目类别:
Community Engagement Core
社区参与核心
  • 批准号:
    10782031
  • 财政年份:
    2023
  • 资助金额:
    $ 778.02万
  • 项目类别:
Community Partners
社区合作伙伴
  • 批准号:
    10749766
  • 财政年份:
    2023
  • 资助金额:
    $ 778.02万
  • 项目类别:
SaTC: CORE: Small: Building Resilience into LEO Satellite Networks by Exploiting Network Layer Characteristics
SaTC:核心:小型:通过利用网络层特征构建 LEO 卫星网络的弹性
  • 批准号:
    2308761
  • 财政年份:
    2023
  • 资助金额:
    $ 778.02万
  • 项目类别:
    Continuing Grant
SCC-CIVIC-FA Track A: Targeted Micro-retrofits based on Building Envelope Scans using Drones, GPR, and Deep Neural Networks
SCC-CIVIC-FA 轨道 A:基于使用无人机、探地雷达和深度神经网络进行建筑包络扫描的有针对性的微改造
  • 批准号:
    2322242
  • 财政年份:
    2023
  • 资助金额:
    $ 778.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Strategically Engaging Private Institutions at Building Research Infrastructure, Networks and Knowledge (BRINK) in the Emergence of Research
合作研究:会议:在研究的兴起中战略性地让私营机构参与建设研究基础设施、网络和知识(BRINK)
  • 批准号:
    2324591
  • 财政年份:
    2023
  • 资助金额:
    $ 778.02万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了