Brain--inspired disinhihbitory learning rule for continual learning tasks in artificial neural networks

人工神经网络中持续学习任务的脑启发去抑制学习规则

基本信息

  • 批准号:
    EP/R035806/1
  • 负责人:
  • 金额:
    $ 132.58万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    未结题

项目摘要

Machines are achieving near-human performance at learning tasks such as image categorisation or speech recognition, but most of the state-of-the-art solutions excel in fixed environments. Systems deployed in real-world scenario, on the other hand, need to be able to learn in changing environments. Why is this a challenge? Every time a typical learning system encounters a new task, it overwrites the solution to previous tasks by what it learns on the new one. Imagine a robot used for elderly care: After two months of training it to carry the person up and down the stairs, there are renovations in the house, and the robot learns to transport the person with a temporary lift. It would be silly if the robot would thereby unlearn its skills for navigating stairs and would have to relearn the stair condition for two months after the renovation. Current state-of-the art machine learning algorithms have this limitation, a challenge called continual learning, or life-long learning.For this EPSRC Fellowship, we plan to develop a brain-inspired learning algorithm and test it in artificial neural networks solving a continual learning task. So, let's look at how the brain might solve continual learning. Humans have the fascinating ability to adapt to their environment and memorise experiences; both require memory. We can learn quickly and remember for a long time, but this leads to a dilemma: In order to learn quickly, the brain needs to change very easily i.e. be plastic, but in order to remember for a long time, the brain must not be too plastic. The basis of learning and memory at the neural level are changes in the connections between neurons, called synaptic plasticity. Scientists have worked thoroughly to characterise synaptic plasticity, focusing on excitatory neurons, while mostly neglecting the role of inhibitory neurons. We suggest that instead of learning equally across all experience, the solution to the dilemma is to regulate which memories to learn, therefore avoiding unnecessary overwriting of important memories. We propose that inhibition is the key to regulating learning, in that lowering inhibition opens a gate for learning. To test this hypothesis, in this EPSRC Fellowship we will investigate the interaction of excitatory and inhibitory plasticity using computational models in recurrent networks. We will then test whether and how inhibition gates synaptic plasticity and therefore learning. Finally, we will test the performance of our brain-inspired learning rule in a continual learning task of navigation under a reinforcement learning framework.
机器在学习任务(如图像分类或语音识别)方面的表现接近人类,但大多数最先进的解决方案在固定环境中表现出色。另一方面,部署在真实世界场景中的系统需要能够在不断变化的环境中学习。为什么这是一个挑战?每当一个典型的学习系统遇到一个新任务时,它就会用它在新任务上学到的东西来覆盖以前任务的解决方案。想象一下,一个用于老年人护理的机器人:经过两个月的训练,它可以载着人上下楼梯,房子里有装修,机器人学会了用临时升降机运送人。如果机器人因此忘记了它在楼梯上的导航技能,并且在翻新后的两个月内不得不重新学习楼梯的状况,那将是愚蠢的。目前最先进的机器学习算法有这样的局限性,一个叫做持续学习或终身学习的挑战。对于这个EPSRC奖学金,我们计划开发一个大脑启发的学习算法,并在人工神经网络中测试它,解决一个持续学习的任务。让我们来看看大脑是如何解决持续学习的。人类具有适应环境和记忆经验的迷人能力;两者都需要记忆。我们可以学得很快,记住很长时间,但这导致了一个困境:为了快速学习,大脑需要非常容易地改变,即是塑料,但为了记住很长一段时间,大脑不能太可塑。神经水平上学习和记忆的基础是神经元之间连接的变化,称为突触可塑性。科学家们已经对突触可塑性进行了彻底的研究,主要集中在兴奋性神经元上,而大多忽视了抑制性神经元的作用。我们认为,与其在所有经验中平等地学习,解决困境的办法是调节哪些记忆要学习,从而避免不必要的重要记忆的混淆。我们认为抑制是调节学习的关键,因为降低抑制为学习打开了一扇大门。为了验证这一假设,在EPSRC奖学金中,我们将使用递归网络中的计算模型来研究兴奋性和抑制性可塑性的相互作用。然后,我们将测试抑制是否以及如何控制突触可塑性,从而学习。最后,我们将在强化学习框架下的导航持续学习任务中测试我们的大脑启发学习规则的性能。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Free recall scaling laws and short-term memory effects in a latching attractor network.
锁定吸引子网络中的自由回忆缩放定律和短期记忆效应。
Small, correlated changes in synaptic connectivity may facilitate rapid motor learning.
  • DOI:
    10.1038/s41467-022-32646-w
  • 发表时间:
    2022-09-02
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Feulner B;Perich MG;Chowdhury RH;Miller LE;Gallego JA;Clopath C
  • 通讯作者:
    Clopath C
Latent representations in hippocampal network model co-evolve with behavioral exploration of task structure.
海马网络模型中的潜在表示与任务结构的行为探索共同发展。
  • DOI:
    10.1038/s41467-024-44871-6
  • 发表时间:
    2024-01-23
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Cone, Ian;Clopath, Claudia
  • 通讯作者:
    Clopath, Claudia
Neural manifold under plasticity in a goal driven learning behaviour.
在目标驱动的学习行为中可塑性下的神经歧管。
  • DOI:
    10.1371/journal.pcbi.1008621
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Feulner B;Clopath C
  • 通讯作者:
    Clopath C
The functional role of sequentially neuromodulated synaptic plasticity in behavioural learning.
  • DOI:
    10.1371/journal.pcbi.1009017
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Ang GWY;Tang CS;Hay YA;Zannone S;Paulsen O;Clopath C
  • 通讯作者:
    Clopath C
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Claudia Clopath其他文献

Predicting neuronal activity with an adaptive exponential integrate-and-fire model
  • DOI:
    10.1186/1471-2202-8-s2-p121
  • 发表时间:
    2007-07-06
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Nicolas Marcille;Claudia Clopath;Rajnish Ranjan;Shaul Druckmann;Felix Schuermann;Henry Markram;Wulfram Gerstner
  • 通讯作者:
    Wulfram Gerstner
Hippocampus shapes entorhinal cortical output through a direct feedback circuit
海马通过直接反馈回路塑造内嗅皮层的输出
  • DOI:
    10.1038/s41593-025-01883-9
  • 发表时间:
    2025-02-18
  • 期刊:
  • 影响因子:
    20.000
  • 作者:
    Tanvi Butola;Melissa Hernández-Frausto;Stefan Blankvoort;Marcus Sandbukt Flatset;Lulu Peng;Ariel Hairston;Cara Deanna Johnson;Margot Elmaleh;Amanda Amilcar;Fabliha Hussain;Claudia Clopath;Clifford Kentros;Jayeeta Basu
  • 通讯作者:
    Jayeeta Basu
Uncertainty estimation with prediction-error circuits
使用预测误差电路的不确定性估计
  • DOI:
    10.1038/s41467-025-58311-6
  • 发表时间:
    2025-03-28
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Loreen Hertäg;Katharina A. Wilmes;Claudia Clopath
  • 通讯作者:
    Claudia Clopath
Multi-synaptic boutons are a feature of CA1 hippocampal connections in the emstratum oriens/em
多突触突触小体是内嗅皮层/海马 CA1 区连接的一个特征。
  • DOI:
    10.1016/j.celrep.2023.112397
  • 发表时间:
    2023-05-30
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Mark Rigby;Federico W. Grillo;Benjamin Compans;Guilherme Neves;Julia Gallinaro;Sophie Nashashibi;Sally Horton;Pedro M. Pereira Machado;Maria Alejandra Carbajal;Gema Vizcay-Barrena;Florian Levet;Jean-Baptiste Sibarita;Angus Kirkland;Roland A. Fleck;Claudia Clopath;Juan Burrone
  • 通讯作者:
    Juan Burrone
Dopaminergic action prediction errors serve as a value-free teaching signal
多巴胺能作用预测误差作为一种无价值的教学信号。
  • DOI:
    10.1038/s41586-025-09008-9
  • 发表时间:
    2025-05-14
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Francesca Greenstreet;Hernando Martinez Vergara;Yvonne Johansson;Sthitapranjya Pati;Laura Schwarz;Stephen C. Lenzi;Jesse P. Geerts;Matthew Wisdom;Alina Gubanova;Lars B. Rollik;Jasvin Kaur;Theodore Moskovitz;Joseph Cohen;Emmett Thompson;Troy W. Margrie;Claudia Clopath;Marcus Stephenson-Jones
  • 通讯作者:
    Marcus Stephenson-Jones

Claudia Clopath的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Claudia Clopath', 18)}}的其他基金

Dopamine-induced hippocampal plasticity: A synaptic model of foraging in mice
多巴胺诱导的海马可塑性:小鼠觅食的突触模型
  • 批准号:
    BB/P018785/1
  • 财政年份:
    2017
  • 资助金额:
    $ 132.58万
  • 项目类别:
    Research Grant
Brain-inspired non-stationary learning.
受大脑启发的非平稳学习。
  • 批准号:
    EP/M019780/1
  • 财政年份:
    2015
  • 资助金额:
    $ 132.58万
  • 项目类别:
    Research Grant

相似国自然基金

多层次纳米叠层块体复合材料的仿生设计、制备及宽温域增韧研究
  • 批准号:
    51973054
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

BAMBOO - Build scAled Modular Bamboo-inspired Offshore sOlar systems
BAMBOO - 构建规模化模块化竹子式海上太阳能系统
  • 批准号:
    10109981
  • 财政年份:
    2024
  • 资助金额:
    $ 132.58万
  • 项目类别:
    EU-Funded
CAREER: Origami-inspired design for a tissue engineered heart valve
职业:受折纸启发的组织工程心脏瓣膜设计
  • 批准号:
    2337540
  • 财政年份:
    2024
  • 资助金额:
    $ 132.58万
  • 项目类别:
    Continuing Grant
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
  • 批准号:
    2344109
  • 财政年份:
    2024
  • 资助金额:
    $ 132.58万
  • 项目类别:
    Standard Grant
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
  • 批准号:
    2340453
  • 财政年份:
    2024
  • 资助金额:
    $ 132.58万
  • 项目类别:
    Continuing Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
  • 批准号:
    2340799
  • 财政年份:
    2024
  • 资助金额:
    $ 132.58万
  • 项目类别:
    Continuing Grant
NSF-NSERC: Fairness Fundamentals: Geometry-inspired Algorithms and Long-term Implications
NSF-NSERC:公平基础:几何启发的算法和长期影响
  • 批准号:
    2342253
  • 财政年份:
    2024
  • 资助金额:
    $ 132.58万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
  • 批准号:
    2344256
  • 财政年份:
    2024
  • 资助金额:
    $ 132.58万
  • 项目类别:
    Standard Grant
Development of Integrated Quantum Inspired Algorithms for Shapley Value based Fast and Interpretable Feature Subset Selection
基于 Shapley 值的快速且可解释的特征子集选择的集成量子启发算法的开发
  • 批准号:
    24K15089
  • 财政年份:
    2024
  • 资助金额:
    $ 132.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
  • 批准号:
    2344424
  • 财政年份:
    2024
  • 资助金额:
    $ 132.58万
  • 项目类别:
    Standard Grant
Collaborative Research:CIF:Small:Fisher-Inspired Approach to Quickest Change Detection for Score-Based Models
合作研究:CIF:Small:Fisher 启发的基于评分模型的最快变化检测方法
  • 批准号:
    2334898
  • 财政年份:
    2024
  • 资助金额:
    $ 132.58万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了