Understanding Quantum Non-Equilibrium Matter: Many-Body Localisation versus Glasses, Theory and Experiment
了解量子非平衡物质:多体定位与眼镜、理论和实验
基本信息
- 批准号:EP/R04421X/1
- 负责人:
- 金额:$ 61.82万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many-body systems comprise everything from simple metals, over complicated organic molecules, all the way to living cells. While their physics can be extremely complex, this complexity is however often mostly irrelevant, as most such systems will - when left alone - thermalise, a process through which most information about their preparation history and their initial state is lost. Think of pouring milk into your coffee or tea: there are many different important individual details describing this process - how fast, how much milk, angle and position of milk jug, milk temperature, and so on. All of those parameters are needed to predict the intricate turbulent pattern seen when one starts stirring the tea. At long time, however, all this complexity is hidden and we see merely a homogeneous brownish liquid. This behaviour is typical of ergodic systems and central to statistical mechanics; it allows us to make concrete predictions about a system given only a handful of parameters such as total energy. Physics knows, however, about exceptions to this behaviour. In particular, in recent years, the phenomenon of many-body localisation (MBL) has emerged as a new paradigm for the absence of thermalisation and non-ergodicity in interacting quantum systems. In these systems, all degrees of freedom become localised by an external disorder, and are therefore partially decoupled from each other and cease to thermalise. In particular, it could be shown that these systems keep a much better local memory of their initial conditions. This peculiar effect might for instance be exploited in the future to design better materials to host quantum bits with reduced decoherence - even if some information leaks into the local environment, it will remain local for much longer. While MBL is a novel quantum effect, in classical systems the paradigm of slow dynamics and non-ergodicity is the glass transition, whereby fluid systems - such as liquids, colloidal suspensions or even granular mixtures - cease to flow and fall out of equilibrium at low temperatures or high densities. Here, we seek support for a new theory-experiment collaboration between Nottingham and Cambridge aimed at developing a fundamental understanding of central aspects of non-equilibrium quantum many-body systems. In particular, we propose to establish the connections between MBL and glasses, thereby unveiling new mechanisms for quantum slow relaxation and non-ergodicity, with potential implications for the design and control of novel quantum non-equilibrium materials and devices. Our team comprises researchers with ample experience in experimental and theoretical atomic physics, statistical physics and condensed matter, who have made central contributions to MBL, glasses, open quantum systems, and other topics directly related to this proposal. This joint project will allow us to work hand-in-hand such that new theoretical ideas can quickly be tested in the experiment, which directly feeds back into theoretical developments.
多体系统包括从简单的金属到复杂的有机分子,一直到活细胞的一切。虽然它们的物理学可能极其复杂,但这种复杂性通常是不相关的,因为大多数此类系统在单独放置时都会热化,在这个过程中,有关其准备历史和初始状态的大部分信息都会丢失。想象一下把牛奶倒进咖啡或茶中:有许多不同的重要细节描述了这个过程--速度、牛奶量、牛奶壶的角度和位置、牛奶温度等等。所有这些参数都是预测当人们开始搅拌茶时所看到的复杂湍流模式所必需的。然而,在很长一段时间里,所有这些复杂性都被隐藏起来,我们只看到一种均匀的褐色液体。这种行为是遍历系统的典型特征,也是统计力学的核心;它允许我们对一个只给出少数参数(如总能量)的系统做出具体的预测。然而,物理学知道这种行为的例外。特别是,近年来,多体局域化(MBL)现象已经成为相互作用量子系统中没有热化和非遍历性的新范式。在这些系统中,所有的自由度都被外部无序所局限,因此彼此部分解耦并停止热化。特别是,可以证明这些系统对它们的初始条件保持了更好的局部记忆。例如,这种特殊的效应可能在未来被利用来设计更好的材料,以减少退相干的量子比特-即使一些信息泄漏到本地环境中,它也会在本地保持更长的时间。虽然MBL是一种新的量子效应,但在经典系统中,缓慢动力学和非遍历性的范例是玻璃化转变,其中流体系统-例如液体,胶体悬浮液或甚至颗粒混合物-在低温或高密度下停止流动并失去平衡。在这里,我们寻求支持诺丁汉和剑桥之间的一个新的理论实验合作,旨在发展的非平衡量子多体系统的核心方面的基本理解。特别是,我们建议建立MBL和玻璃之间的连接,从而揭示量子慢弛豫和非遍历性的新机制,具有潜在的影响,设计和控制的新型量子非平衡材料和设备。我们的团队由在实验和理论原子物理学,统计物理学和凝聚态方面具有丰富经验的研究人员组成,他们对MBL,玻璃,开放量子系统以及与该提案直接相关的其他主题做出了重要贡献。这个联合项目将使我们能够携手合作,使新的理论思想可以在实验中迅速得到测试,直接反馈到理论发展中。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using matrix product states to study the dynamical large deviations of kinetically constrained models
利用矩阵乘积状态研究动力学约束模型的动力学大偏差
- DOI:10.48550/arxiv.1903.01570
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Bañuls M
- 通讯作者:Bañuls M
Exact large deviation statistics and trajectory phase transition of a deterministic boundary driven cellular automaton.
确定性边界驱动元胞自动机的精确大偏差统计和轨迹相变。
- DOI:10.1103/physreve.100.020103
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Buca B
- 通讯作者:Buca B
A solvable class of non-Markovian quantum multipartite dynamics
一类可解的非马尔可夫量子多部分动力学
- DOI:10.48550/arxiv.2107.01692
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Budini A
- 通讯作者:Budini A
Nonequilibrium Dark Space Phase Transition.
非平衡暗空间相变。
- DOI:10.1103/physrevlett.128.040603
- 发表时间:2022
- 期刊:
- 影响因子:8.6
- 作者:Carollo F
- 通讯作者:Carollo F
Solvable class of non-Markovian quantum multipartite dynamics
- DOI:10.1103/physreva.104.032206
- 发表时间:2021-09-08
- 期刊:
- 影响因子:2.9
- 作者:Budini, Adrian A.;Garrahan, Juan P.
- 通讯作者:Garrahan, Juan P.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan Garrahan其他文献
Juan Garrahan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juan Garrahan', 18)}}的其他基金
Novel non-equilibrium states of matter in periodically driven spin systems: from time crystals to integrated thermal machines
周期性驱动自旋系统中的新型非平衡物质态:从时间晶体到集成热机
- 批准号:
EP/V031201/1 - 财政年份:2021
- 资助金额:
$ 61.82万 - 项目类别:
Research Grant
Non-equilibrium Dynamics of Quantum Open Systems: From Fundamental Theory to Applications in Cold Atoms, Superconducting Circuits and Quantum Glasses
量子开放系统的非平衡动力学:从基础理论到冷原子、超导电路和量子玻璃中的应用
- 批准号:
EP/I017828/1 - 财政年份:2011
- 资助金额:
$ 61.82万 - 项目类别:
Research Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
- 批准号:
EP/Z000106/1 - 财政年份:2024
- 资助金额:
$ 61.82万 - 项目类别:
Research Grant
CAREER: Epitaxial stabilization of non-perovskite oxide quantum materials
职业:非钙钛矿氧化物量子材料的外延稳定
- 批准号:
2339913 - 财政年份:2024
- 资助金额:
$ 61.82万 - 项目类别:
Continuing Grant
In-vivo studies for a quantum optical non-invasive glucose sensor
量子光学非侵入式葡萄糖传感器的体内研究
- 批准号:
10105375 - 财政年份:2024
- 资助金额:
$ 61.82万 - 项目类别:
Launchpad
Quantum non-locality with mass-entangled metastable helium atoms atoms
质量纠缠亚稳态氦原子的量子非局域性
- 批准号:
DP240101346 - 财政年份:2024
- 资助金额:
$ 61.82万 - 项目类别:
Discovery Projects
Non-perturbative studies of electron-lattice interactions in quantum materials
量子材料中电子晶格相互作用的非微扰研究
- 批准号:
2401388 - 财政年份:2024
- 资助金额:
$ 61.82万 - 项目类别:
Continuing Grant
Quantum Manybody Dynamical Effects in Non-linear Optical Spectroscopy
非线性光谱学中的量子多体动力学效应
- 批准号:
2404788 - 财政年份:2024
- 资助金额:
$ 61.82万 - 项目类别:
Standard Grant
Non-semisimple quantum invariants of three and four manifolds
三流形和四流形的非半简单量子不变量
- 批准号:
2304990 - 财政年份:2023
- 资助金额:
$ 61.82万 - 项目类别:
Standard Grant
Non-perturbative aspects of three-dimensional quantum gravity
三维量子引力的非微扰方面
- 批准号:
2882187 - 财政年份:2023
- 资助金额:
$ 61.82万 - 项目类别:
Studentship
Quantum singularity and non-linear positive maps on operator algebras
算子代数上的量子奇点和非线性正映射
- 批准号:
23K03151 - 财政年份:2023
- 资助金额:
$ 61.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comprehensive understanding of the quantum criticality yielding the exotic superconductivity and the non-Fermi-liquid behavior
全面了解产生奇异超导性和非费米液体行为的量子临界性
- 批准号:
23K03315 - 财政年份:2023
- 资助金额:
$ 61.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




