CAREER: Learning to learn - Artificial Intelligence Augmented Chemistry for Molecular Simulations and Beyond
职业:学会学习 - 分子模拟及其他领域的人工智能增强化学
基本信息
- 批准号:2044165
- 负责人:
- 金额:$ 65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Dr. Pratyush Tiwary of University of Maryland, College Park, is supported by an award from the Chemical Theory, Models and Computational Methods program in the Division of Chemistry to develop simulation algorithms at the interface of statistical mechanics and artificial intelligence (AI) for the study of rare events. The synergistic use of statistical mechanics and AI enables the automatic, human bias-free modeling of very slow processes in chemistry and biochemistry that unfold across many time and length scales. The tools Dr. Tiwary and his team are developing are to be incorporated into efficient open-source computational platforms for widespread use by the scientific community. One of many applications he is pursuing is the quantification of time spent by small molecules inside biological hosts, a property fundamental to the chemistry of life processes, yet very hard to calculate through experiments or simulations. The results of Tiwary’s modeling will be compared against experimental investigations by his partners at Stony Brook University and the National Cancer Institute. Under this award, Dr. Tiwary will also be developing platforms to introduce coding and AI to high school/college students and educators in physical sciences through workshops and online tutorials, providing the workforce of the next generation with transferable skills for today's job markets. These efforts are being carried out through collaborations with Prince George’s Community College, Bowie State University and through virtual means with other partners across the country.Pratyush Tiwary’s research seeks to develop the next generation of ultra-long timescale molecular dynamics (MD) simulation methods by integrating AI with statistical mechanics through a “learning to learn” framework. This framework uses AI to learn the reaction coordinate (RC) characterizing a generic molecular system, interpreting it as a past-future information bottleneck. The knowledge of the RC is used through biased sampling methods to systematically sample more of the configuration space and thereby generate more relevant data to train AI. Furthermore, the use of statistical mechanics helps AI in different ways, by (i) making “black box” AI techniques more transparent, and (ii) dealing with the problem of poor training data from which AI can produce misleading results. The iteration between AI and MD continues till the RC converges, leading to estimates of thermodynamic constants, rates and rate-limiting steps in one shot. These methods will be applied to the study of protein-ligand and riboswitch-ligand interactions, both of which are central to life processes, yet poorly understood. These long timescale all-atom simulation methods are designed to unravel the complexity and richness that arises from the interplay between different degrees of freedom in these and other generic molecular systems. Finally, this research program also strives to demonstrate how mixing statistical mechanics and AI can lead to interpretable and trustworthy use of AI, thereby increasing confidence in large-scale deployments of AI across chemistry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
马里兰大学帕克分校的Pratyush Tiwary博士得到了化学部化学理论、模型和计算方法项目的支持,以开发统计力学和人工智能(AI)界面上的模拟算法,用于研究罕见事件。统计力学和人工智能的协同使用使化学和生物化学中非常缓慢的过程能够自动、无人类偏见地建模,这些过程在许多时间和长度尺度上展开。Tiwary博士和他的团队正在开发的工具将被整合到高效的开源计算平台中,供科学界广泛使用。他正在追求的众多应用之一是量化生物宿主内小分子所花费的时间,这是生命过程化学的基本性质,但很难通过实验或模拟计算。Tiwary的建模结果将与他在石溪大学和国家癌症研究所的合作伙伴的实验调查进行比较。根据这一奖项,Tiwary博士还将开发平台,通过研讨会和在线教程向高中生/大学生和物理学教育工作者介绍编码和人工智能,为下一代劳动力提供适用于当今就业市场的可转移技能。这些努力是通过与乔治王子社区学院、鲍伊州立大学的合作以及与全国各地的其他合作伙伴的虚拟手段来进行的。Pratyush Tiwary的研究旨在开发下一代超长时间尺度分子动力学(MD)模拟方法,方法是将人工智能与统计力学相结合,通过“学习”框架。这个框架使用人工智能来学习表征通用分子系统的反应坐标(RC),将其解释为过去-未来的信息瓶颈。通过有偏采样方法利用RC的知识来系统地采样更多的配置空间,从而生成更多的相关数据来训练人工智能。此外,统计力学的使用以不同的方式帮助人工智能,通过(I)使“黑匣子”人工智能技术更加透明,以及(Ii)处理人工智能可能产生误导性结果的不良训练数据的问题。人工智能和MD之间的迭代一直持续到RC收敛,导致在一次拍摄中估计热力学常数、速率和速率限制步骤。这些方法将被应用于蛋白质-配体和核糖开关-配体相互作用的研究,这两种方法都是生命过程的核心,但人们对此知之甚少。这些长时间尺度的全原子模拟方法旨在揭开这些和其他一般分子系统中不同自由度之间相互作用所产生的复杂性和丰富性。最后,这项研究计划还努力展示统计力学和人工智能的结合如何导致对人工智能的可解释和可信的使用,从而增加对人工智能在化学领域大规模部署的信心。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Computing committors in collective variables via Mahalanobis diffusion maps
- DOI:10.1016/j.acha.2023.01.001
- 发表时间:2023-01-13
- 期刊:
- 影响因子:2.5
- 作者:Evans, Luke;Cameron, Maria K.;Tiwary, Pratyush
- 通讯作者:Tiwary, Pratyush
Making High-Dimensional Molecular Distribution Functions Tractable through Belief Propagation on Factor Graphs
通过因子图上的置信传播使高维分子分布函数易于处理
- DOI:10.1021/acs.jpcb.1c05717
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Smith, Zachary;Tiwary, Pratyush
- 通讯作者:Tiwary, Pratyush
SGOOP-d: Estimating Kinetic Distances and Reaction Coordinate Dimensionality for Rare Event Systems from Biased/Unbiased Simulations
SGOOP-d:通过有偏/无偏模拟估计罕见事件系统的动力学距离和反应坐标维数
- DOI:10.1021/acs.jctc.1c00431
- 发表时间:2021
- 期刊:
- 影响因子:5.5
- 作者:Tsai, Sun-Ting;Smith, Zachary;Tiwary, Pratyush
- 通讯作者:Tiwary, Pratyush
Computing committors via Mahalanobis diffusion maps with enhanced sampling data
- DOI:10.1063/5.0122990
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Luke S. Evans;M. Cameron;P. Tiwary
- 通讯作者:Luke S. Evans;M. Cameron;P. Tiwary
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pratyush Tiwary其他文献
Insights into the discrepancy between affinity and activation in <em>F. ulcerans</em> ZTP riboswitch activators through structure-informed design and machine learning-augmented molecular dynamics simulations
- DOI:
10.1016/j.bpj.2023.11.2765 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Shams Mehdi;Christopher R. Fullenkamp;Christopher P. Jones;Pratyush Tiwary;John S. Schneekloth - 通讯作者:
John S. Schneekloth
Characterizing RNA conformational ensembles with thermodynamic maps
- DOI:
10.1016/j.bpj.2023.11.580 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Lukas Herron;Pratyush Tiwary - 通讯作者:
Pratyush Tiwary
Unveiling the intricate role of S100A1 in regulating RyR1 activity: A commentary on “Structural insights into the regulation of RyR1 by S100A1”
揭示S100A1在调节雷诺丁受体1(RyR1)活性中的复杂作用:对《S100A1调节雷诺丁受体1(RyR1)的结构学见解》的评论
- DOI:
10.1016/j.ceca.2024.102947 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:4.000
- 作者:
Megan L. Perry;Kristen M. Varney;Pratyush Tiwary;David J. Weber;Erick O. Hernández-Ochoa - 通讯作者:
Erick O. Hernández-Ochoa
A graph neural network-state predictive information bottleneck (GNN-SPIB) approach for learning molecular thermodynamics and kinetics
一种用于学习分子热力学和动力学的图神经网络状态预测信息瓶颈(GNN-SPIB)方法
- DOI:
10.1039/d4dd00315b - 发表时间:
2024-11-28 - 期刊:
- 影响因子:5.600
- 作者:
Ziyue Zou;Dedi Wang;Pratyush Tiwary - 通讯作者:
Pratyush Tiwary
Analyzing and enhancing protein dynamics with artificial intelligence
- DOI:
10.1016/j.bpj.2023.11.2599 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Dedi Wang;Pratyush Tiwary - 通讯作者:
Pratyush Tiwary
Pratyush Tiwary的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Learning how we learn: linking inhibitory brain circuits to motor learning
了解我们如何学习:将抑制性大脑回路与运动学习联系起来
- 批准号:
DE240100201 - 财政年份:2024
- 资助金额:
$ 65万 - 项目类别:
Discovery Early Career Researcher Award
Touch to learn: How sensory cues impact word segmentation and learning
触摸学习:感官线索如何影响分词和学习
- 批准号:
10764458 - 财政年份:2023
- 资助金额:
$ 65万 - 项目类别:
Touch to learn: How sensory cues impact word segmentation and learning
触摸学习:感官线索如何影响分词和学习
- 批准号:
10584077 - 财政年份:2023
- 资助金额:
$ 65万 - 项目类别:
The SE-Learn Online Professional Development Platform for Enhanced Social Emotional Learning with Students
SE-Learn 在线专业发展平台,增强学生的社交情感学习
- 批准号:
10601591 - 财政年份:2023
- 资助金额:
$ 65万 - 项目类别:
Learn, transfer, generate: Developing novel deep learning models for enhancing robustness and accuracy of small-scale single-cell RNA sequencing studies
学习、转移、生成:开发新颖的深度学习模型,以增强小规模单细胞 RNA 测序研究的稳健性和准确性
- 批准号:
10535708 - 财政年份:2023
- 资助金额:
$ 65万 - 项目类别:
CAREER: Reading To Learn: Language-Guided Machine Learning
职业:从阅读中学习:语言引导的机器学习
- 批准号:
2239363 - 财政年份:2023
- 资助金额:
$ 65万 - 项目类别:
Continuing Grant
Coaching to Learn: A Peer-to-Peer Intervention to Help College Students Apply and Transfer Effective Learning Strategies across STEM Courses
辅导学习:通过同伴干预帮助大学生在 STEM 课程中应用和迁移有效的学习策略
- 批准号:
2142671 - 财政年份:2022
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
Understanding sign-augmented language learning in parent-child dyads: what can we learn from the embodied experiences of young children with Down synd
理解亲子二人组中的手语增强语言学习:我们可以从患有唐氏综合症的幼儿的具体经历中学到什么
- 批准号:
2737734 - 财政年份:2022
- 资助金额:
$ 65万 - 项目类别:
Studentship
Coaching to Learn: A Peer-to-Peer Intervention to Help College Students Apply and Transfer Effective Learning Strategies across STEM Courses
辅导学习:通过同伴干预帮助大学生在 STEM 课程中应用和迁移有效的学习策略
- 批准号:
2142383 - 财政年份:2022
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
Learn to Discover (L2D): A Training Platform in Data Sciences and Machine Learning for Biomedicine and Health Researchers.
学习发现 (L2D):面向生物医学和健康研究人员的数据科学和机器学习培训平台。
- 批准号:
MR/V039229/1 - 财政年份:2021
- 资助金额:
$ 65万 - 项目类别:
Research Grant