Non-linear (large signal) Millimetre-wave Devices, Circuits and Systems On-Wafer Characterization Facility

非线性(大信号)毫米波器件、电路和系统晶圆表征设备

基本信息

  • 批准号:
    EP/S01005X/1
  • 负责人:
  • 金额:
    $ 185.93万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Mobile telephones and the communications they enable have now become an essential part of our everyday lives. The number of people using mobile technologies, which was practically unused 20 years ago, is astonishing: Unique mobile subscribers have recently exceeded 5 billion, and more than 3 billion people have subscribed to mobile broadband services. The pervasiveness of this technology means that future societies will be built with telecommunications at their heart, with visionary concepts such as Smart-Cities relying on the rapid exchange of information for the optimisation of available resources and the improvement of people's lives. For this reason, 5th generation (5G) of mobile networks will be much more than just an evolution of the previous mobile generations. While maintaining the role of connecting devices, such as mobile telephones, with more than ten times the current data rate, 5G will also provide a platform to underpin a large number of services, including the connection of billions of sensors and devices in the Internet of Things, Smart Grid control, autonomous driving, and remote health care.This paradigm change in mobile telecommunications can only happen if supported by viable and fundamental enabling technologies. In particular, the use of communications in the millimetre-wave (mm-wave) spectrum has been identified as the technology of choice to support the demand in higher data-rates. For this reason, mm-wave technology, which in the past has always been considered as niche, is now becoming a mass-market technology ($8.69B by 2025, source:Grand View Research), with a huge revenue potential and with a clear strategic role in the future of the telecom market. Moreover, the drive from the telecommunications market to make mm-wave technology affordable, will also benefit other mm-wave applications, such as radar and imaging systems that have important consequences on other strategic markets (military and aerospace).To enable the overall high-performance mm-wave electronics for these applications and markets in terms of energy consumption, size and cost, it is crucial to optimise circuits at a single device (transistor) level. This is very difficult to achieve when devices are operating in non-linear regimes, where the usual design approximations simply fail. Source and load-pull measurements are the de-facto standard method of characterising high frequency devices working non-linearly. The experimental data can be used directly in the design of key, high-frequency components such as high-efficiency power amplifiers, in the verification and development of design kit models, to assess the improvement, reliability and repeatability of new device technologies, and to derive and verify new theoretical design concepts.The Centre for High Frequency Engineering at Cardiff University is a world leader in large-signal characterisation and modelling of high-frequency devices. This position has been achieved thanks to the development of novel concepts such as waveform engineering and state-of-the-art load-pull and waveform measurement systems that have provided trusted experimental data, enabling timely research and support to industry. This world-leading position is however now at risk due to the frequency limitations of the current experimental setup available. This proposal outlines the need for a new source/load-pull capability for mm-wave on-wafer characterisation that will extend measurement capabilities at Cardiff up to 110 GHz. The flexible configuration proposed will be unique, and will guarantee significant competitive advantage to Cardiff, UK Universities and UK industry. It will also bolster the international profile of UK research, by attracting collaborations with the world's best scientists. The system will be promoted among Cardiff partners and to other institutions and companies to perform cutting-edge collaborative research, as well as to external users who desire a pure measurement service.
移动电话及其实现的通信现在已成为我们日常生活中必不可少的一部分。使用20年前几乎没有人使用的移动技术的人数令人震惊:独特的移动用户最近已超过50亿,超过30亿人订阅了移动宽带服务。这项技术的普及意味着未来社会的建设将以电信为核心,智能城市等富有远见的概念依赖于快速的信息交换,以优化现有资源和改善人们的生活。因此,第五代(5G)移动网络将不仅仅是前几代移动网络的演进。在保持移动电话等连接设备的作用的同时,5G还将提供一个平台来支撑大量服务,包括物联网中数十亿个传感器和设备的连接、智能电网控制、自动驾驶和远程医疗。只有在可行和基本的使能技术的支持下,移动电信领域的这种范式变化才能发生。特别是,毫米波(毫米波)频谱中通信的使用已被确定为支持更高数据速率需求的首选技术。出于这个原因,过去一直被认为是利基市场的毫米波技术,现在正在成为一种大众市场技术(到2025年价值86.9亿美元,来源:Grand View Research),具有巨大的收入潜力,在电信市场的未来具有明确的战略作用。此外,电信市场使毫米波技术变得负担得起的驱动力,也将使其他毫米波应用受益,如雷达和成像系统,这些应用对其他战略市场(军事和航空航天)具有重要影响。要使这些应用和市场的整体高性能毫米波电子产品在能耗、尺寸和成本方面能够实现,关键是在单个器件(晶体管)级别优化电路。当器件在非线性状态下运行时,这是很难实现的,在这种状态下,通常的设计近似方法根本无法实现。源和负载-拉力测量是描述非线性工作的高频设备的事实上的标准方法。实验数据可以直接用于设计关键的高频部件,如高效功率放大器,用于验证和开发设计套件模型,评估新器件技术的改进、可靠性和可重复性,并推导和验证新的理论设计概念。卡迪夫大学高频工程中心在高频器件的大信号表征和建模方面处于世界领先地位。这一地位的实现得益于波形工程等新概念的发展,以及提供可信实验数据的最先进的负载拉力和波形测量系统,使研究和行业支持得以及时进行。然而,由于目前可用的实验装置的频率限制,这一世界领先地位现在处于危险之中。该提案概述了对用于毫米波晶片上特性的新的源/负载拉动能力的需求,该能力将把加的夫的测量能力扩展到110 GHz。提议的灵活配置将是独一无二的,并将保证加的夫、英国大学和英国工业的显著竞争优势。它还将通过吸引与世界上最优秀的科学家的合作,提升英国研究的国际形象。该系统将在加的夫合作伙伴中推广,并向其他机构和公司推广,以进行尖端合作研究,以及向希望获得纯粹测量服务的外部用户推广。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Millimeter-Wave On-Wafer Large Signal Characterization System for Harmonic Source/Load Pull and Waveform Measurements
用于谐波源/负载牵引和波形测量的毫米波晶圆大信号表征系统
  • DOI:
    10.1109/ims37964.2023.10187929
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Baddeley A
  • 通讯作者:
    Baddeley A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Tasker其他文献

Paul Tasker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Tasker', 18)}}的其他基金

Integration of RF Circuits with High Speed GaN Switching on Silicon Substrates
在硅衬底上集成射频电路与高速 GaN 开关
  • 批准号:
    EP/N016408/1
  • 财政年份:
    2016
  • 资助金额:
    $ 185.93万
  • 项目类别:
    Research Grant
High Performance Buffers for RF GaN Electronics
适用于 RF GaN 电子器件的高性能缓冲器
  • 批准号:
    EP/N028848/1
  • 财政年份:
    2016
  • 资助金额:
    $ 185.93万
  • 项目类别:
    Research Grant
GaN Electronics: RF Reliability and Degradation Mechanisms
GaN 电子器件:射频可靠性和退化机制
  • 批准号:
    EP/K02633X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 185.93万
  • 项目类别:
    Research Grant
Holistic Design of Power Amplifiers for Future Wireless Systems
未来无线系统功率放大器的整体设计
  • 批准号:
    EP/F033702/1
  • 财政年份:
    2008
  • 资助金额:
    $ 185.93万
  • 项目类别:
    Research Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
  • 批准号:
    61502059
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
全纯Mobius变换及其在相对论和信号分析中的应用
  • 批准号:
    11071230
  • 批准年份:
    2010
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
枢纽港选址及相关问题的算法设计
  • 批准号:
    71001062
  • 批准年份:
    2010
  • 资助金额:
    17.6 万元
  • 项目类别:
    青年科学基金项目
统计过程控制图的设计理论及其应用
  • 批准号:
    10771107
  • 批准年份:
    2007
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目
MIMO电磁探测技术与成像方法研究
  • 批准号:
    40774055
  • 批准年份:
    2007
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目

相似海外基金

Non-linear large signal network analysis
非线性大信号网络分析
  • 批准号:
    512477106
  • 财政年份:
    2023
  • 资助金额:
    $ 185.93万
  • 项目类别:
    Major Research Instrumentation
Barriers to and Health Consequences of Non- Pharmacological Chronic Pain Treatment among Patients Tapering Prescription Opioids in a Large Integrated Healthcare System
在大型综合医疗保健系统中逐渐减少处方阿片类药物的患者中非药物慢性疼痛治疗的障碍和健康后果
  • 批准号:
    10740206
  • 财政年份:
    2023
  • 资助金额:
    $ 185.93万
  • 项目类别:
Distributed, Non-linear Signal Processing for Large Scale Engineering Applications
适用于大规模工程应用的分布式非线性信号处理
  • 批准号:
    RGPIN-2017-06629
  • 财政年份:
    2021
  • 资助金额:
    $ 185.93万
  • 项目类别:
    Discovery Grants Program - Individual
The cosmic large scale structure: non-linear dynamics and non-Gaussian statistics
宇宙大尺度结构:非线性动力学和非高斯统计
  • 批准号:
    2441314
  • 财政年份:
    2020
  • 资助金额:
    $ 185.93万
  • 项目类别:
    Studentship
Distributed, Non-linear Signal Processing for Large Scale Engineering Applications
适用于大规模工程应用的分布式非线性信号处理
  • 批准号:
    RGPIN-2017-06629
  • 财政年份:
    2020
  • 资助金额:
    $ 185.93万
  • 项目类别:
    Discovery Grants Program - Individual
Distributed, Non-linear Signal Processing for Large Scale Engineering Applications
适用于大规模工程应用的分布式非线性信号处理
  • 批准号:
    RGPIN-2017-06629
  • 财政年份:
    2019
  • 资助金额:
    $ 185.93万
  • 项目类别:
    Discovery Grants Program - Individual
Probing the early universe with the anisotrpies in the large-scale structure of the universe from the non-linear effect by the gravity
从引力的非线性效应探讨宇宙大尺度结构的各向异性
  • 批准号:
    19J12254
  • 财政年份:
    2019
  • 资助金额:
    $ 185.93万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Active, semi-active structural control against large ground motion and non-linear real-time hybrid simulation
针对大地震动的主动、半主动结构控制与非线性实时混合仿真
  • 批准号:
    18H01587
  • 财政年份:
    2018
  • 资助金额:
    $ 185.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Distributed, Non-linear Signal Processing for Large Scale Engineering Applications
适用于大规模工程应用的分布式非线性信号处理
  • 批准号:
    RGPIN-2017-06629
  • 财政年份:
    2018
  • 资助金额:
    $ 185.93万
  • 项目类别:
    Discovery Grants Program - Individual
Distributed, Non-linear Signal Processing for Large Scale Engineering Applications
适用于大规模工程应用的分布式非线性信号处理
  • 批准号:
    RGPIN-2017-06629
  • 财政年份:
    2017
  • 资助金额:
    $ 185.93万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了